Alessandro Dosio

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5442234/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Will drought events become more frequent and severe in Europe?. International Journal of Climatology, 2018, 38, 1718-1736.	3.5	553
2	Magnitude of extreme heat waves in present climate and their projection in a warming world. Journal of Geophysical Research D: Atmospheres, 2014, 119, 12,500.	3.3	390
3	Extreme heat waves under 1.5 °C and 2 °C global warming. Environmental Research Letters, 2018, 13, 054006.	5.2	262
4	Future Global Meteorological Drought Hot Spots: A Study Based on CORDEX Data. Journal of Climate, 2020, 33, 3635-3661.	3.2	230
5	Assessment of the Performance of CORDEX Regional Climate Models in Simulating East African Rainfall. Journal of Climate, 2013, 26, 8453-8475.	3.2	203
6	Dynamical downscaling of CMIP5 global circulation models over CORDEX-Africa with COSMO-CLM: evaluation over the present climate and analysis of the added value. Climate Dynamics, 2015, 44, 2637-2661.	3.8	193
7	Bias correction of the ENSEMBLES high-resolution climate change projections for use by impact models: Evaluation on the present climate. Journal of Geophysical Research, 2011, 116, .	3.3	177
8	Climatology, annual cycle and interannual variability of precipitation and temperature in <scp>CORDEX</scp> simulations over West Africa. International Journal of Climatology, 2014, 34, 2241-2257.	3.5	161
9	The effects of 1.5 and 2 degrees of global warming on Africa in the CORDEX ensemble. Environmental Research Letters, 2018, 13, 065003.	5.2	149
10	Projections of climate change indices of temperature and precipitation from an ensemble of biasâ€adjusted highâ€resolution EUROâ€CORDEX regional climate models. Journal of Geophysical Research D: Atmospheres, 2016, 121, 5488-5511.	3.3	142
11	Climate change projections for CORDEX-Africa with COSMO-CLM regional climate model and differences with the driving global climate models. Climate Dynamics, 2016, 46, 1599-1625.	3.8	142
12	What can we know about future precipitation in Africa? Robustness, significance and added value of projections from a large ensemble of regional climate models. Climate Dynamics, 2019, 53, 5833-5858.	3.8	137
13	Global changes of extreme coastal wave energy fluxes triggered by intensified teleconnection patterns. Geophysical Research Letters, 2017, 44, 2416-2426.	4.0	135
14	Improving pan-European hydrological simulation of extreme events through statistical bias correction of RCM-driven climate simulations. Hydrology and Earth System Sciences, 2011, 15, 2599-2620.	4.9	124
15	Projection of temperature and heat waves for Africa with an ensemble of CORDEX Regional Climate Models. Climate Dynamics, 2017, 49, 493-519.	3.8	124
16	Changes of heating and cooling degreeâ€days in Europe from 1981 to 2100. International Journal of Climatology, 2018, 38, e191.	3.5	123
17	COSMO-CLM (CCLM) climate simulations over CORDEX-Africa domain: analysis of the ERA-Interim driven simulations at 0.44Ű and 0.22Ű resolution. Climate Dynamics, 2014, 42, 3015-3038.	3.8	119
18	A multi-hazard regional level impact assessment for Europe combining indicators of climatic and non-climatic change. Global Environmental Change, 2013, 23, 522-536.	7.8	112

#	Article	IF	CITATIONS
19	Modelling the atmospheric transport and deposition of sulphur and nitrogen over the United Kingdom and assessment of the influence of SO2 emissions from international shipping. Atmospheric Environment, 2007, 41, 2355-2367.	4.1	108
20	A Diagnostic Evaluation of Precipitation in CORDEX Models over Southern Africa. Journal of Climate, 2013, 26, 9477-9506.	3.2	107
21	The southern African climate under 1.5 °C and 2 °C of global warming as simulated by CORDEX regior climate models. Environmental Research Letters, 2018, 13, 065002.	ial 5.2	105
22	Daily characteristics of West African summer monsoon precipitation in CORDEX simulations. Theoretical and Applied Climatology, 2016, 123, 369-386.	2.8	94
23	Will Half a Degree Make a Difference? Robust Projections of Indices of Mean and Extreme Climate in Europe Under 1.5°C, 2°C, and 3°C Global Warming. Geophysical Research Letters, 2018, 45, 935-944.	4.0	93
24	Projection of occurrence of extreme dryâ€wet years and seasons in Europe with stationary and nonstationary Standardized Precipitation Indices. Journal of Geophysical Research D: Atmospheres, 2013, 118, 7628-7639.	3.3	92
25	Evaluation and projections of extreme precipitation over southern Africa from two CORDEX models. Climatic Change, 2016, 135, 655-668.	3.6	91
26	Bias correction of the ENSEMBLES high resolution climate change projections for use by impact models: Analysis of the climate change signal. Journal of Geophysical Research, 2012, 117, .	3.3	89
27	Projected climate over the Greater Horn of Africa under 1.5 °C and 2 °C global warming. Environmenta Research Letters, 2018, 13, 065004.	al 5.2	88
28	Assessment of future flood hazard in Europe using a large ensemble of biasâ€corrected regional climate simulations. Journal of Geophysical Research, 2012, 117, .	3.3	85
29	Potential impact of 1.5 °C and 2 °C global warming on consecutive dry and wet days over West Africa Environmental Research Letters, 2018, 13, 055013.	•5.2	85
30	Future changes in rainfall associated with ENSO, IOD and changes in the mean state over Eastern Africa. Climate Dynamics, 2019, 52, 2029-2053.	3.8	83
31	Projected future daily characteristics of African precipitation based on global (CMIP5, CMIP6) and regional (CORDEX, CORDEX-CORE) climate models. Climate Dynamics, 2021, 57, 3135-3158.	3.8	81
32	Climate change impacts on water resources in the Upper Blue Nile (Abay) River Basin, Ethiopia. Journal of Hydrology, 2021, 592, 125614.	5.4	79
33	Forest fires and adaptation options in Europe. Regional Environmental Change, 2016, 16, 21-30.	2.9	74
34	When Will Current Climate Extremes Affecting Maize Production Become the Norm?. Earth's Future, 2019, 7, 113-122.	6.3	74
35	Teleconnection responses in multi-GCM driven CORDEX RCMs over Eastern Africa. Climate Dynamics, 2016, 46, 2821-2846.	3.8	72
36	Projections of Human Exposure to Dangerous Heat in African Cities Under Multiple Socioeconomic and Climate Scenarios. Earth's Future, 2019, 7, 528-546.	6.3	71

#	Article	IF	CITATIONS
37	Role of Shear and the Inversion Strength During Sunset Turbulence Over Land: Characteristic Length Scales. Boundary-Layer Meteorology, 2006, 121, 537-556.	2.3	63
38	The near future availability of photovoltaic energy in Europe and Africa in climate-aerosol modeling experiments. Renewable and Sustainable Energy Reviews, 2014, 38, 706-716.	16.4	62
39	Testing bias adjustment methods for regional climate change applications under observational uncertainty and resolution mismatch. Atmospheric Science Letters, 2020, 21, e978.	1.9	59
40	Influence of changes in socioeconomic and climatic conditions on future heat-related health chalth challenges in Europe. Global and Planetary Change, 2019, 172, 45-59.	3.5	58
41	Mediterranean habitat loss under future climate conditions: Assessing impacts on the Natura 2000 protected area network. Applied Geography, 2016, 75, 83-92.	3.7	55
42	COSMO-CLM regional climate simulations in the Coordinated Regional Climate Downscaling Experiment (CORDEX) framework: a review. Geoscientific Model Development, 2021, 14, 5125-5154.	3.6	55
43	Consequences of 1.5 °C and 2 °C global warming levels for temperature and precipitation changes ov Central Africa. Environmental Research Letters, 2018, 13, 055011.	er 5.2	53
44	The snow load in Europe and the climate change. Climate Risk Management, 2018, 20, 138-154.	3.2	49
45	Process-oriented assessment of RCA4 regional climate model projections over the Congo Basin under \$\$1.5 ^{circ }{ext {C}}\$\$ 1.5 a^ C and \$\$2 ^{circ }{ext {C}}\$\$ 2 a^ C global warming levels: influence of regional moisture fluxes. Climate Dynamics, 2019, 53, 1911-1935.	3.8	49
46	Evaluation of rainfall simulations over Uganda in CORDEX regional climate models. Theoretical and Applied Climatology, 2019, 137, 1117-1134.	2.8	48
47	A tale of two futures: contrasting scenarios of future precipitation for West Africa from an ensemble of regional climate models. Environmental Research Letters, 2020, 15, 064007.	5.2	44
48	Dispersion of a Passive Tracer in Buoyancy- and Shear-Driven Boundary Layers. Journal of Applied Meteorology and Climatology, 2003, 42, 1116-1130.	1.7	41
49	Spatial distribution of precipitation annual cycles over South Africa in 10 CORDEX regional climate model present-day simulations. Climate Dynamics, 2016, 46, 1799-1818.	3.8	41
50	Relating Eulerian and Lagrangian Statistics for the Turbulent Dispersion in the Atmospheric Convective Boundary Layer. Journals of the Atmospheric Sciences, 2005, 62, 1175-1191.	1.7	38
51	Modeling biomass burning and related carbon emissions during the 21st century in Europe. Journal of Geophysical Research G: Biogeosciences, 2013, 118, 1732-1747.	3.0	38
52	On the need for regional climate information over Africa under varying levels of global warming. Environmental Research Letters, 2018, 13, 060401.	5.2	37
53	How will the progressive global increase of arid areas affect population and land-use in the 21st century?. Global and Planetary Change, 2021, 205, 103597.	3.5	37
54	The dispersion of chemically reactive species in the atmospheric boundary layer. Meteorology and Atmospheric Physics, 2004, 87, 23.	2.0	36

#	Article	IF	CITATIONS
55	Towards a monitoring system of temperature extremes in Europe. Natural Hazards and Earth System Sciences, 2018, 18, 91-104.	3.6	36
56	Modeling burned area in Europe with the Community Land Model. Journal of Geophysical Research G: Biogeosciences, 2013, 118, 265-279.	3.0	33
57	Chilling accumulation in fruit trees in Spain under climate change. Natural Hazards and Earth System Sciences, 2019, 19, 1087-1103.	3.6	33
58	Impacts of 2°C global warming on primary production and soil carbon storage capacity at pan-European level. Climate Services, 2017, 7, 64-77.	2.5	29
59	Simulation of the circulation and related photochemical ozone dispersion in the Po plains (northern) Tj ETQq1 1 2002, 107, LOP 2-1.	0.784314 3.3	rgBT /Overlo 27
60	Global exposure of population and landâ€use to meteorological droughts under different warming levels and <scp>SSPs</scp> : A <scp>CORDEX</scp> â€based study. International Journal of Climatology, 2021, 41, 6825-6853.	3.5	26
61	Comparing correction methods of RCM outputs for improving crop impact projections in the Iberian Peninsula for 21st century. Climatic Change, 2016, 134, 283-297.	3.6	25
62	Historical Evaluation and Future Projections of 100â€m Wind Energy Potentials Over CORDEXâ€East Asia. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2020JD032874.	3.3	24
63	Adjusting climate model bias for agricultural impact assessment: How to cut the mustard. Climate Services, 2019, 13, 65-69.	2.5	22
64	Statistics of Absolute and Relative Dispersion in the Atmospheric Convective Boundary Layer: A Large-Eddy Simulation Study. Journals of the Atmospheric Sciences, 2006, 63, 1253-1272.	1.7	21
65	Assessing the meteorological conditions of a deep Italian Alpine valley system by means of a measuring campaign and simulations with two models during a summer smog episode. Atmospheric Environment, 2001, 35, 5441-5454.	4.1	20
66	Assessing the influence of climate model uncertainty on EU-wide climate change impact indicators. Climatic Change, 2013, 120, 211-227.	3.6	20
67	What Can We Know About Recent Past Precipitation Over Africa? Daily Characteristics of African Precipitation From a Large Ensemble of Observational Products for Model Evaluation. Earth and Space Science, 2021, 8, e2020EA001466.	2.6	20
68	Assessing Shifts of Mediterranean and Arid Climates Under RCP4.5 and RCP8.5 Climate Projections in Europe. Pure and Applied Geophysics, 2018, 175, 3955-3971.	1.9	19
69	Present Climate Evaluation and Added Value Analysis of Dynamically Downscaled Simulations of CORDEX—East Asia. Journal of Applied Meteorology and Climatology, 2018, 57, 2317-2341.	1.5	19
70	Processâ€Based Analysis of the Added Value of Dynamical Downscaling Over Central Africa. Geophysical Research Letters, 2020, 47, e2020GL089702.	4.0	19
71	Strategies for adapting maize to climate change and extreme temperatures in Andalusia, Spain. Climate Research, 2015, 65, 159-173.	1.1	19
72	Obtaining the correct sea surface temperature: bias correction of regional climate model data for the Mediterranean Sea. Climate Dynamics, 2018, 51, 1095-1117.	3.8	17

#	Article	IF	CITATIONS
73	Projections of indices of daily temperature and precipitation based on bias-adjusted CORDEX-Africa regional climate model simulations. Climatic Change, 2022, 170, 1.	3.6	17
74	Frequency Analysis of Critical Meteorological Conditions in a Changing Climate—Assessing Future Implications for Railway Transportation in Austria. Climate, 2016, 4, 25.	2.8	13
75	Process-based assessment of the impact of reduced turbulent mixing on Congo Basin precipitation in the RCA4 Regional Climate Model. Climate Dynamics, 2021, 56, 1951-1965.	3.8	12
76	Hydrological and biogeochemical response of the Mediterranean Sea to freshwater flow changes for the end of the 21st century. PLoS ONE, 2018, 13, e0192174.	2.5	10
77	†Will the Paris Agreement protect us from hydro-meteorological extremes?'. Environmental Research Letters, 2020, 15, 104037.	5.2	9
78	Clobal populationâ€weighted degreeâ€day projections for a combination of climate and socioâ€economic scenarios. International Journal of Climatology, 2021, 41, 5447-5464.	3.5	5
79	Assessing Shifts of Mediterranean and Arid Climates Under RCP4.5 and RCP8.5 Climate Projections in Europe. Pageoph Topical Volumes, 2019, , 235-251.	0.2	1
80	The Combined Effect of Mechanical and Thermal Forcing on the Dispersion of a Plume: Fine-Scale Modeling and Parameterization , 2004, , 363-371.		0