Herv Martin

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/5442019/herve-martin-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

8,417 48 30 53 h-index g-index citations papers 6.26 9,292 3.2 53 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
48	High-temperature fluids in granites during the Neoarchaean-Palaeoproterozoic transition: Insight from Closepet titanite chemistry and U-Pb dating (Dharwar craton, India). <i>Lithos</i> , 2021 , 386-387, 106039	9 ^{2.9}	
47	Mineral fluid interactions in the late Archean Closepet granite batholith, Dharwar Craton, southern India. <i>Geological Society Special Publication</i> , 2020 , 489, 293-314	1.7	4
46	Geochronology and geochemistry of Meso- to Neoarchean magmatic epidote-bearing potassic granites, western Dharwar Craton (BellurNagamangalaPandavpura corridor), southern India: implications for the successive stages of crustal reworking and cratonization. <i>Geological Society</i>	1.7	8
45	Petro-geochemical constraints on the source and evolution of magmas at El Misti volcano (Peru). Lithos, 2017 , 268-271, 240-259	2.9	16
44	Geochemical Modelling of Igneous Processes Principles And Recipes in R Language 2016 ,		27
43	The geological roots of South America: 4.1 Ga and 3.7 Ga zircon crystals discovered in N.E. Brazil and N.W. Argentina. <i>Precambrian Research</i> , 2015 , 271, 49-55	3.9	36
42	Sanukitoid 2015 , 2228-2229		
41	Why Archaean TTG cannot be generated by MORB melting in subduction zones. <i>Lithos</i> , 2014 , 198-199, 1-13	2.9	182
40	The diversity and evolution of late-Archean granitoids: Evidence for the onset of fhodern-style plate tectonics between 3.0 and 2.5Ga. <i>Lithos</i> , 2014 , 205, 208-235	2.9	383
39	Crustal growth in the 3.4½.7Ga S□ B Jos□'de Campestre Massif, Borborema Province, NE Brazil. <i>Precambrian Research</i> , 2013 , 227, 120-156	3.9	62
38	Differentiation of the late-Archaean sanukitoid series and some implications for crustal growth: Insights from geochemical modelling on the Bulai pluton, Central Limpopo Belt, South Africa. <i>Precambrian Research</i> , 2013 , 227, 186-203	3.9	45
37	Crustal evolution between 2.0 and 3.5 Ga in the southern Gavi□ block (Umburanas-Brumado-Aracatu region), S□ brancisco Craton, Brazil: A 3.5B.8 Ga proto-crust in the Gavi□ block?. <i>Journal of South American Earth Sciences</i> , 2012 , 40, 129-142	2	33
36	Hafnium isotope evidence from Archean granitic rocks for deep-mantle origin of continental crust. <i>Earth and Planetary Science Letters</i> , 2012 , 337-338, 211-223	5.3	138
35	Evidence in Archaean Alkali Feldspar Megacrysts for High-Temperature Interaction with Mantle Fluids. <i>Journal of Petrology</i> , 2012 , 53, 67-98	3.9	27
34	Forty years of TTG research. <i>Lithos</i> , 2012 , 148, 312-336	2.9	523
33	Geochemical modelling of the tonalitic and trondhjemitic granulites from the Itabuna-Salvador-CuralliBlock, Bahia, Brazil. <i>Journal of South American Earth Sciences</i> , 2011 , 31, 312-33	23	6
32	Geochronology of granulites from the south Itabuna-Salvador-Curalll Block, Slb Francisco Craton (Brazil): Nd isotopes and UPb zircon ages. <i>Journal of South American Earth Sciences</i> , 2011 , 31, 397-413	2	39

(2003-2010)

31	Continent Formation in the Archean and Chemical Evolution of the Cratonic Lithosphere: Melt-Rock Reaction Experiments at 3-4 GPa and Petrogenesis of Archean Mg-Diorites (Sanukitoids). <i>Journal of Petrology</i> , 2010 , 51, 1237-1266	3.9	148
30	Comment on Continental geochemical signatures in dacites from Iceland and implications for models of early Archaean crust formation by Willbold, M., Hegner, E., Stracke A. and Rocholl A <i>Earth and Planetary Science Letters</i> , 2010 , 293, 218-219	5.3	9
29	The sanukitoid series: magmatism at the Archaean Proterozoic transition 2010,		11
28	Simple mixing as the major control of the evolution of volcanic suites in the Ecuadorian Andes. <i>Contributions To Mineralogy and Petrology</i> , 2010 , 160, 297-312	3.5	246
27	Evolution of the late Pleistocene Mojanda Euya Fuya volcanic complex (Ecuador), by progressive adakitic involvement in mantle magma sources. <i>Bulletin of Volcanology</i> , 2009 , 71, 233-258	2.4	38
26	Could Iceland be a modern analogue for the Earth's early continental crust?. <i>Terra Nova</i> , 2008 , 20, 463-4	168	26
25	Petrogenesis of the late-orogenic Bravo granite and surrounding high-grade country rocks in the Palaeoproterozoic orogen of Itabuna-Salvador-Curall block, Bahia, Brazil. <i>Precambrian Research</i> , 2008 , 167, 35-52	3.9	22
24	Adakitic magmas in the Ecuadorian Volcanic Front: Petrogenesis of the Iliniza Volcanic Complex (Ecuador). <i>Journal of Volcanology and Geothermal Research</i> , 2007 , 159, 366-392	2.8	46
23	Calc-Alkaline Magmatism at the Archean Proterozoic Transition: the Caic Complex Basement (NE Brazil). <i>Journal of Petrology</i> , 2007 , 48, 2149-2185	3.9	96
22	4. Building of a Habitable Planet. <i>Earth, Moon and Planets</i> , 2006 , 98, 97-151	0.6	22
22	 4. Building of a Habitable Planet. <i>Earth, Moon and Planets</i>, 2006, 98, 97-151 6. Environmental Context. <i>Earth, Moon and Planets</i>, 2006, 98, 205-245 	0.6	9
21	6. Environmental Context. <i>Earth, Moon and Planets</i> , 2006 , 98, 205-245 An overview of adakite, tonaliteErondhjemitegranodiorite (TTG), and sanukitoid: relationships	0.6	9
21	6. Environmental Context. <i>Earth, Moon and Planets</i> , 2006 , 98, 205-245 An overview of adakite, tonaliteErondhjemiteEjranodiorite (TTG), and sanukitoid: relationships and some implications for crustal evolution. <i>Lithos</i> , 2005 , 79, 1-24 Temporal Evolution of Magmatism in the Northern Volcanic Zone of the Andes: The Geology and	0.6	9
21 20 19	6. Environmental Context. <i>Earth, Moon and Planets</i> , 2006 , 98, 205-245 An overview of adakite, tonaliteErondhjemiteEranodiorite (TTG), and sanukitoid: relationships and some implications for crustal evolution. <i>Lithos</i> , 2005 , 79, 1-24 Temporal Evolution of Magmatism in the Northern Volcanic Zone of the Andes: The Geology and Petrology of Cayambe Volcanic Complex (Ecuador). <i>Journal of Petrology</i> , 2005 , 46, 2225-2252 Dubious case for slab melting in the Northern volcanic zone of the Andes: Comment and Reply.	o.6 2.9 3.9	9 1899 81
21 20 19	6. Environmental Context. Earth, Moon and Planets, 2006, 98, 205-245 An overview of adakite, tonaliteBrondhjemiteBranodiorite (TTG), and sanukitoid: relationships and some implications for crustal evolution. Lithos, 2005, 79, 1-24 Temporal Evolution of Magmatism in the Northern Volcanic Zone of the Andes: The Geology and Petrology of Cayambe Volcanic Complex (Ecuador). Journal of Petrology, 2005, 46, 2225-2252 Dubious case for slab melting in the Northern volcanic zone of the Andes: Comment and Reply. Geology, 2004, 32, e46-e47 Dynamic co-evolution of peptides and chemical energetics, a gateway to the emergence of homochirality and the catalytic activity of peptides. Origins of Life and Evolution of Biospheres, 2004,	o.6 2.9 3.9	9 1899 81 8
21 20 19 18	6. Environmental Context. Earth, Moon and Planets, 2006, 98, 205-245 An overview of adakite, tonaliteErondhjemiteEgranodiorite (TTG), and sanukitoid: relationships and some implications for crustal evolution. Lithos, 2005, 79, 1-24 Temporal Evolution of Magmatism in the Northern Volcanic Zone of the Andes: The Geology and Petrology of Cayambe Volcanic Complex (Ecuador). Journal of Petrology, 2005, 46, 2225-2252 Dubious case for slab melting in the Northern volcanic zone of the Andes: Comment and Reply. Geology, 2004, 32, e46-e47 Dynamic co-evolution of peptides and chemical energetics, a gateway to the emergence of homochirality and the catalytic activity of peptides. Origins of Life and Evolution of Biospheres, 2004, 34, 35-55 Palaeoproterozoic dome-forming structures related to granulite-facies metamorphism, Jequill'	0.62.93.951.5	9 1899 81 8

13	Transition from calc-alkalic to adakitic magmatism at Cayambe volcano, Ecuador: Insights into slab melts and mantle wedge interactions. <i>Geology</i> , 2002 , 30, 967	5	54
12	Secular changes in tonalite-trondhjemite-granodiorite composition as markers of the progressive cooling of Earth. <i>Geology</i> , 2002 , 30, 319	5	321
11	Adakite-like Lavas from Antisana Volcano (Ecuador): Evidence for Slab Melt Metasomatism Beneath Andean Northern Volcanic Zone. <i>Journal of Petrology</i> , 2002 , 43, 199-217	3.9	161
10	Multi-element geochemical modelling of crustThantle interactions during late-Archaean crustal growth: the Closepet granite (South India). <i>Precambrian Research</i> , 2001 , 112, 87-105	3.9	168
9	IDADE Pb-Pb E ASSINATURA ISOT PICA Rb-Sr E Sm-Nd DO MAGMATISMO SIEN TICO PALEOPROTEROZ ICO NO SUL DO CINTUR DO MI VEL SALVADOR-CURA DO MACIO DO SIEN TICO DE SUD FU IIIX, BAHIA. <i>Revista Brasileira De Geociòcias</i> , 2001 , 31, 397-400		5
8	Late Archaean (2550\(\mathbb{I}\)520 Ma) juvenile magmatism in the Eastern Dharwar craton, southern India: constraints from geochronology, Nd\(\mathbb{B}\)r isotopes and whole rock geochemistry. <i>Precambrian Research</i> , 2000 , 99, 225-254	3.9	412
7	Adakitic magmas: modern analogues of Archaean granitoids. <i>Lithos</i> , 1999 , 46, 411-429	2.9	1230
6	Recycling of the Archaean continental crust: the case study of the Gavi \(\bar{\textbf{b}} \), State of Bahia, NE Brazil. Journal of South American Earth Sciences, 1998 , 11, 487-498	2	33
5	Crustal evolution in the early Archaean of South America: example of the Sete Voltas Massif, Bahia State, Brazil. <i>Precambrian Research</i> , 1997 , 82, 35-62	3.9	62
4	Non-Newtonian effects during injection in partially crystallised magmas. <i>Journal of Volcanology and Geothermal Research</i> , 1996 , 71, 31-44	2.8	27
3	Late Archaean crust-mantle interactions: geochemistry of LREE-enriched mantle derived magmas. Example of the Closepet batholith, southern India. <i>Contributions To Mineralogy and Petrology</i> , 1995 , 119, 314-329	3.5	165
2	Petrogenesis of Archaean Trondhjemites, Tonalites, and Granodiorites from Eastern Finland: Major and Trace Element Geochemistry. <i>Journal of Petrology</i> , 1987 , 28, 921-953	3.9	442
1	Effect of steeper Archean geothermal gradient on geochemistry of subduction-zone magmas. Geology, 1986 , 14, 753	5	715