Emi Nagoshi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5441987/publications.pdf

Version: 2024-02-01

304743 289244 3,171 48 22 40 h-index citations g-index papers 53 53 53 3680 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Maintenance of mitochondrial integrity in midbrain dopaminergic neurons governed by a conserved developmental transcription factor. Nature Communications, 2022, 13, 1426.	12.8	11
2	Identification of a micropeptide and multiple secondary cell genes that modulate $\langle i \rangle$ Drosophila $\langle i \rangle$ male reproductive success. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	23
3	Uncovering the Roles of Clocks and Neural Transmission in the Resilience of Drosophila Circadian Network. Frontiers in Physiology, 2021, 12, 663339.	2.8	3
4	Neurofibromin 1 in mushroom body neurons mediates circadian wake drive through activating cAMP–PKA signaling. Nature Communications, 2021, 12, 5758.	12.8	15
5	Fluorescence Live Imaging of Drosophila Circadian Pacemaker Neurons. Methods in Molecular Biology, 2021, 2130, 207-219.	0.9	3
6	Nitric oxide mediates neuro-glial interaction that shapes Drosophila circadian behavior. PLoS Genetics, 2020, 16, e1008312.	3.5	19
7	Nitric oxide mediates neuro-glial interaction that shapes Drosophila circadian behavior. , 2020, 16 , e 1008312 .		O
8	Nitric oxide mediates neuro-glial interaction that shapes Drosophila circadian behavior. , 2020, 16 , e 1008312 .		0
9	Nitric oxide mediates neuro-glial interaction that shapes Drosophila circadian behavior. , 2020, 16 , e 1008312 .		O
10	Nitric oxide mediates neuro-glial interaction that shapes Drosophila circadian behavior. , 2020, 16 , e 1008312 .		0
11	Nitric oxide mediates neuro-glial interaction that shapes Drosophila circadian behavior. , 2020, 16 , e 1008312 .		O
12	Nitric oxide mediates neuro-glial interaction that shapes Drosophila circadian behavior. , 2020, 16, e 1008312 .		0
13	Nitric oxide mediates neuro-glial interaction that shapes Drosophila circadian behavior. , 2020, 16 , e 1008312 .		O
14	Nitric oxide mediates neuro-glial interaction that shapes Drosophila circadian behavior. , 2020, 16 , e 1008312 .		0
15	Decoding Drosophila circadian pacemaker circuit. Current Opinion in Insect Science, 2019, 36, 33-38.	4.4	8
16	Single-cell Resolution Fluorescence Live Imaging of Drosophila Circadian Clocks in Larval Brain Culture. Journal of Visualized Experiments, 2018, , .	0.3	6
17	Drosophila Models of Sporadic Parkinson's Disease. International Journal of Molecular Sciences, 2018, 19, 3343.	4.1	37
18	Parallel roles of transcription factors dFOXO and FER2 in the development and maintenance of dopaminergic neurons. PLoS Genetics, 2018, 14, e1007271.	3.5	20

#	Article	IF	CITATIONS
19	Fluorescence circadian imaging reveals a PDF-dependent transcriptional regulation of the Drosophila molecular clock. Scientific Reports, 2017, 7, 41560.	3.3	18
20	A Screening of UNF Targets Identifies Rnb, a Novel Regulator of Drosophila Circadian Rhythms. Journal of Neuroscience, 2017, 37, 6673-6685.	3.6	8
21	Guidelines for Genome-Scale Analysis of Biological Rhythms. Journal of Biological Rhythms, 2017, 32, 380-393.	2.6	237
22	Evaluating the Autonomy of the Drosophila Circadian Clock in Dissociated Neuronal Culture. Frontiers in Cellular Neuroscience, 2017, 11, 317.	3.7	6
23	Transforming Growth Factor \hat{l}^2 /Activin signaling in neurons increases susceptibility to starvation. PLoS ONE, 2017, 12, e0187054.	2.5	5
24	USP2-45 Is a Circadian Clock Output Effector Regulating Calcium Absorption at the Post-Translational Level. PLoS ONE, 2016, 11, e0145155.	2.5	25
25	RNA-seq Profiling of Small Numbers of Drosophila Neurons. Methods in Enzymology, 2015, 551, 369-386.	1.0	32
26	Transcriptional Regulation via Nuclear Receptor Crosstalk Required for the Drosophila Circadian Clock. Current Biology, 2015, 25, 1502-1508.	3.9	39
27	A Conserved Role for p48 Homologs in Protecting Dopaminergic Neurons from Oxidative Stress. PLoS Genetics, 2014, 10, e1004718.	3.5	33
28	The Nuclear Receptor unfulfilled Is Required for Free-Running Clocks in Drosophila Pacemaker Neurons. Current Biology, 2012, 22, 1221-1227.	3.9	18
29	Dissecting differential gene expression within the circadian neuronal circuit of Drosophila. Nature Neuroscience, 2010, 13, 60-68.	14.8	135
30	Surprising gene expression patterns within and between PDF-containing circadian neurons in <i>Drosophila</i> . Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 13497-13502.	7.1	154
31	Transcriptional Feedback and Definition of the Circadian Pacemaker in <i>Drosophila</i> and Animals. Cold Spring Harbor Symposia on Quantitative Biology, 2007, 72, 75-83.	1.1	43
32	Importin \hat{l}_{\pm} transports CaMKIV to the nucleus without utilizing importin \hat{l}_{\pm} . EMBO Journal, 2005, 24, 942-951.	7.8	80
33	The Period Length of Fibroblast Circadian Gene Expression Varies Widely among Human Individuals. PLoS Biology, 2005, 3, e338.	5.6	277
34	Importin $\hat{l}\pm/\hat{l}^2$ Mediates Nuclear Transport of a Mammalian Circadian Clock Component, mCRY2, Together with mPER2, through a Bipartite Nuclear Localization Signal. Journal of Biological Chemistry, 2005, 280, 13272-13278.	3.4	35
35	Circadian Gene Expression in Cultured Cells. Methods in Enzymology, 2005, 393, 543-557.	1.0	74
36	The mammalian circadian timing system: from gene expression to physiology. Chromosoma, 2004, 113, 103-12.	2.2	316

#	Article	IF	CITATION
37	Circadian Gene Expression in Individual Fibroblasts. Cell, 2004, 119, 693-705.	28.9	904
38	Crystallization and preliminary crystallographic analysis of the importin-β–SREBP-2 complex. Acta Crystallographica Section D: Biological Crystallography, 2003, 59, 1866-1868.	2.5	3
39	The Structure of Importin-Â Bound to SREBP-2: Nuclear Import of a Transcription Factor. Science, 2003, 302, 1571-1575.	12.6	188
40	Basic Peptides as Functional Components of Non-viral Gene Transfer Vehicles. Current Protein and Peptide Science, 2003, 4, 141-150.	1.4	43
41	Enhancement of phage-mediated gene transfer by nuclear localization signal. Biochemical and Biophysical Research Communications, 2002, 297, 779-786.	2.1	16
42	Nuclear targeting of DNA. European Journal of Pharmaceutical Sciences, 2001, 13, 17-24.	4.0	27
43	Dimerization of Sterol Regulatory Element-Binding Protein 2 via the Helix-Loop-Helix-Leucine Zipper Domain Is a Prerequisite for Its Nuclear Localization Mediated by Importin \hat{I}^2 . Molecular and Cellular Biology, 2001, 21, 2779-2789.	2.3	61
44	Characterization of Human Herpesvirus 7 U27 Gene Product and Identification of Its Nuclear Localization Signal. Virology, 2000, 272, 394-401.	2.4	17
45	Nucleocytoplasmic Protein Transport and Recycling of Ran Cell Structure and Function, 1999, 24, 425-433.	1.1	74
46	Nuclear Import of Sterol Regulatory Element–binding Protein-2, a Basic Helix-Loop-Helix–Leucine Zipper (bHLH-Zip)–containing Transcription Factor, Occurs through the Direct Interaction of Importin β with HLH-Zip. Molecular Biology of the Cell, 1999, 10, 2221-2233.	2.1	114
47	Asymmetric crossing over in the spontaneous formation of large deletions in the tonB-trp region of the Escherichia coli K-12 chromosome. Molecular Genetics and Genomics, 1999, 261, 523-529.	2.4	16
48	Gene transfer vectors based on Sendai virus, Journal of Controlled Release, 1998, 54, 61-68.	9.9	94