Emi Nagoshi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5441987/publications.pdf Version: 2024-02-01

EMI NACOSHI

#	Article	IF	CITATIONS
1	Circadian Gene Expression in Individual Fibroblasts. Cell, 2004, 119, 693-705.	28.9	904
2	The mammalian circadian timing system: from gene expression to physiology. Chromosoma, 2004, 113, 103-12.	2.2	316
3	The Period Length of Fibroblast Circadian Gene Expression Varies Widely among Human Individuals. PLoS Biology, 2005, 3, e338.	5.6	277
4	Guidelines for Genome-Scale Analysis of Biological Rhythms. Journal of Biological Rhythms, 2017, 32, 380-393.	2.6	237
5	The Structure of Importin-Â Bound to SREBP-2: Nuclear Import of a Transcription Factor. Science, 2003, 302, 1571-1575.	12.6	188
6	Surprising gene expression patterns within and between PDF-containing circadian neurons in <i>Drosophila</i> . Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 13497-13502.	7.1	154
7	Dissecting differential gene expression within the circadian neuronal circuit of Drosophila. Nature Neuroscience, 2010, 13, 60-68.	14.8	135
8	Nuclear Import of Sterol Regulatory Element–binding Protein-2, a Basic Helix-Loop-Helix–Leucine Zipper (bHLH-Zip)–containing Transcription Factor, Occurs through the Direct Interaction of Importin β with HLH-Zip. Molecular Biology of the Cell, 1999, 10, 2221-2233.	2.1	114
9	Importin α transports CaMKIV to the nucleus without utilizing importin β. EMBO Journal, 2005, 24, 942-951.	7.8	80
10	Nucleocytoplasmic Protein Transport and Recycling of Ran Cell Structure and Function, 1999, 24, 425-433.	1.1	74
11	Circadian Gene Expression in Cultured Cells. Methods in Enzymology, 2005, 393, 543-557.	1.0	74
12	Dimerization of Sterol Regulatory Element-Binding Protein 2 via the Helix-Loop-Helix-Leucine Zipper Domain Is a Prerequisite for Its Nuclear Localization Mediated by Importin β. Molecular and Cellular Biology, 2001, 21, 2779-2789.	2.3	61
13	Transcriptional Feedback and Definition of the Circadian Pacemaker in <i>Drosophila</i> and Animals. Cold Spring Harbor Symposia on Quantitative Biology, 2007, 72, 75-83.	1.1	43
14	Basic Peptides as Functional Components of Non-viral Gene Transfer Vehicles. Current Protein and Peptide Science, 2003, 4, 141-150.	1.4	43
15	Transcriptional Regulation via Nuclear Receptor Crosstalk Required for the Drosophila Circadian Clock. Current Biology, 2015, 25, 1502-1508.	3.9	39
16	Drosophila Models of Sporadic Parkinson's Disease. International Journal of Molecular Sciences, 2018, 19, 3343.	4.1	37
17	Importin α/β Mediates Nuclear Transport of a Mammalian Circadian Clock Component, mCRY2, Together with mPER2, through a Bipartite Nuclear Localization Signal. Journal of Biological Chemistry, 2005, 280, 13272-13278.	3.4	35
18	A Conserved Role for p48 Homologs in Protecting Dopaminergic Neurons from Oxidative Stress. PLoS Genetics, 2014, 10, e1004718.	3.5	33

Emi Nagoshi

#	Article	IF	CITATIONS
19	RNA-seq Profiling of Small Numbers of Drosophila Neurons. Methods in Enzymology, 2015, 551, 369-386.	1.0	32
20	Nuclear targeting of DNA. European Journal of Pharmaceutical Sciences, 2001, 13, 17-24.	4.0	27
21	USP2-45 Is a Circadian Clock Output Effector Regulating Calcium Absorption at the Post-Translational Level. PLoS ONE, 2016, 11, e0145155.	2.5	25
22	Gene transfer vectors based on Sendai virus. Journal of Controlled Release, 1998, 54, 61-68.	9.9	24
23	Identification of a micropeptide and multiple secondary cell genes that modulate <i>Drosophila</i> male reproductive success. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	23
24	Parallel roles of transcription factors dFOXO and FER2 in the development and maintenance of dopaminergic neurons. PLoS Genetics, 2018, 14, e1007271.	3.5	20
25	Nitric oxide mediates neuro-glial interaction that shapes Drosophila circadian behavior. PLoS Genetics, 2020, 16, e1008312.	3.5	19
26	The Nuclear Receptor unfulfilled Is Required for Free-Running Clocks in Drosophila Pacemaker Neurons. Current Biology, 2012, 22, 1221-1227.	3.9	18
27	Fluorescence circadian imaging reveals a PDF-dependent transcriptional regulation of the Drosophila molecular clock. Scientific Reports, 2017, 7, 41560.	3.3	18
28	Characterization of Human Herpesvirus 7 U27 Gene Product and Identification of Its Nuclear Localization Signal. Virology, 2000, 272, 394-401.	2.4	17
29	Asymmetric crossing over in the spontaneous formation of large deletions in the tonB-trp region of the Escherichia coli K-12 chromosome. Molecular Genetics and Genomics, 1999, 261, 523-529.	2.4	16
30	Enhancement of phage-mediated gene transfer by nuclear localization signal. Biochemical and Biophysical Research Communications, 2002, 297, 779-786.	2.1	16
31	Neurofibromin 1 in mushroom body neurons mediates circadian wake drive through activating cAMP–PKA signaling. Nature Communications, 2021, 12, 5758.	12.8	15
32	Maintenance of mitochondrial integrity in midbrain dopaminergic neurons governed by a conserved developmental transcription factor. Nature Communications, 2022, 13, 1426.	12.8	11
33	A Screening of UNF Targets Identifies Rnb, a Novel Regulator of Drosophila Circadian Rhythms. Journal of Neuroscience, 2017, 37, 6673-6685.	3.6	8
34	Decoding Drosophila circadian pacemaker circuit. Current Opinion in Insect Science, 2019, 36, 33-38.	4.4	8
35	Evaluating the Autonomy of the Drosophila Circadian Clock in Dissociated Neuronal Culture. Frontiers in Cellular Neuroscience, 2017, 11, 317.	3.7	6
36	Single-cell Resolution Fluorescence Live Imaging of Drosophila Circadian Clocks in Larval Brain Culture. Journal of Visualized Experiments, 2018, , .	0.3	6

Emi Nagoshi

#	Article	IF	CITATIONS
37	Transforming Growth Factor β/Activin signaling in neurons increases susceptibility to starvation. PLoS ONE, 2017, 12, e0187054.	2.5	5
38	Crystallization and preliminary crystallographic analysis of the importin-β–SREBP-2 complex. Acta Crystallographica Section D: Biological Crystallography, 2003, 59, 1866-1868.	2.5	3
39	Uncovering the Roles of Clocks and Neural Transmission in the Resilience of Drosophila Circadian Network. Frontiers in Physiology, 2021, 12, 663339.	2.8	3
40	Fluorescence Live Imaging of Drosophila Circadian Pacemaker Neurons. Methods in Molecular Biology, 2021, 2130, 207-219.	0.9	3
41	Nitric oxide mediates neuro-glial interaction that shapes Drosophila circadian behavior. , 2020, 16, e1008312.		0
42	Nitric oxide mediates neuro-glial interaction that shapes Drosophila circadian behavior. , 2020, 16, e1008312.		0
43	Nitric oxide mediates neuro-glial interaction that shapes Drosophila circadian behavior. , 2020, 16, e1008312.		0
44	Nitric oxide mediates neuro-glial interaction that shapes Drosophila circadian behavior. , 2020, 16, e1008312.		0
45	Nitric oxide mediates neuro-glial interaction that shapes Drosophila circadian behavior. , 2020, 16, e1008312.		0
46	Nitric oxide mediates neuro-glial interaction that shapes Drosophila circadian behavior. , 2020, 16, e1008312.		0
47	Nitric oxide mediates neuro-glial interaction that shapes Drosophila circadian behavior. , 2020, 16, e1008312.		0
48	Nitric oxide mediates neuro-glial interaction that shapes Drosophila circadian behavior. , 2020, 16, e1008312.		0