
Ricardo AlcÃ, ntara

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5441677/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Spinel-type MgxMn2-yFeyO4 as a new electrode for sodium ion batteries. Electrochimica Acta, 2022, 421, 140492.	5.2	5
2	Magnesium Deintercalation From the Spinelâ€Type MgMn 2â€y Fe y O 4 (0.4â‰ y â‰ 2 .0) by Acidâ€Treatment a Electrochemistry. Chemistry - A European Journal, 2021, 27, 12599-12609.	ind _{3.3}	5
3	Testing the reversible insertion of magnesium in a cation-deficient manganese oxy-spinel through a concentration cell. Dalton Transactions, 2021, 50, 2123-2130.	3.3	9
4	Advancing towards a Practical Magnesium Ion Battery. Materials, 2021, 14, 7488.	2.9	19
5	Inorganic solids for dual magnesium and sodium battery electrodes. Journal of Solid State Electrochemistry, 2020, 24, 2565-2573.	2.5	3
6	A theoretical and experimental study of hexagonal molybdenum trioxide as dual-ion electrode for rechargeable magnesium battery. Journal of Alloys and Compounds, 2020, 831, 154795.	5.5	14
7	Theoretical and Experimental Study on the Electrochemical Behavior of Beta-Sodium Vanadate in Rechargeable Magnesium Batteries Using Several Electrolyte Solutions. Journal of the Electrochemical Society, 2020, 167, 070512.	2.9	9
8	Carbon nanomaterials for advanced lithium and sodium-ion batteries. , 2019, , 335-355.		0
9	Morphological adaptability of graphitic carbon nanofibers to enhance sodium insertion in a diglyme-based electrolyte. Dalton Transactions, 2019, 48, 5417-5424.	3.3	8
10	On the Effect of Silicon Substitution in Na ₃ V ₂ (PO ₄) ₃ on the Electrochemical Behavior as Cathode for Sodiumâ€Ion Batteries. ChemElectroChem, 2018, 5, 367-374.	3.4	33
11	NASICON-type Na3V2(PO4)3 as a new positive electrode material forÂrechargeable aluminium battery. Electrochimica Acta, 2018, 260, 798-804.	5.2	51
12	Exploring an Aluminum Ion Battery Based on Molybdite as Working Electrode and Ionic Liquid as Electrolyte. Journal of the Electrochemical Society, 2018, 165, A2994-A2999.	2.9	27
13	On the influence of particle morphology to provide high performing chemically desodiated C@NaV2(PO4)3 as cathode for rechargeable magnesium batteries. Journal of Electroanalytical Chemistry, 2018, 827, 128-136.	3.8	16
14	Applicability of Molybdite as an Electrode Material in Calcium Batteries: A Structural Study of Layer-type Ca _{<i>x</i>} MoO ₃ . Chemistry of Materials, 2018, 30, 5853-5861.	6.7	63
15	On the Mechanism of Magnesium Storage in Micro- and Nano-Particulate Tin Battery Electrodes. Nanomaterials, 2018, 8, 501.	4.1	22
16	Treasure Na-ion anode from trash coke by adept electrolyte selection. Journal of Power Sources, 2017, 347, 127-135.	7.8	40
17	Induced Rate Performance Enhancement in Offâ€Stoichiometric Na _{3+3<i>x</i>} V _{2â^'<i>x</i>} (PO ₄) ₃ with Potential Applicability as the Cathode for Sodiumâ€Ion Batteries. Chemistry - A European Journal, 2017, 23, 7345-7352.	3.3	26
18	On the effect of carbon content for achieving a high performing Na3V2(PO4)3/C nanocomposite as cathode for sodium-ion batteries. Journal of Electroanalytical Chemistry, 2017, 784, 47-54	3.8	49

#	Article	IF	CITATIONS
19	Na3V2(PO4)3 as electrode material for rechargeable magnesium batteries: a case of sodium-magnesium hybrid battery. Electrochimica Acta, 2017, 246, 908-913.	5.2	47
20	Improved Surface Stability of C+M _{<i>x</i>} O _{<i>y</i>} @Na ₃ V ₂ (PO ₄) _{3<!--<br-->Prepared by Ultrasonic Method as Cathode for Sodium-Ion Batteries. ACS Applied Materials & Interfaces, 2017, 9, 1471-1478.}	suby 8.0	37
21	Insight into the Electrochemical Sodium Insertion of Vanadium Superstoichiometric NASICON Phosphate. Inorganic Chemistry, 2017, 56, 11845-11853.	4.0	15
22	Nanometric P2-Na2/3Fe1/3Mn2/3O2 with controlled morphology as cathode for sodium-ion batteries. Journal of Alloys and Compounds, 2017, 724, 465-473.	5.5	37
23	Electrochemical Interaction of Few-Layer Molybdenum Disulfide Composites vs Sodium: New Insights on the Reaction Mechanism. Chemistry of Materials, 2017, 29, 5886-5895.	6.7	71
24	On the Reliability of Sodium Co-Intercalation in Expanded Graphite Prepared by Different Methods as Anodes for Sodium-Ion Batteries. Journal of the Electrochemical Society, 2017, 164, A3804-A3813.	2.9	44
25	Highâ€Performance Na3V2(PO4)3/C Cathode for Sodiumâ€Ion Batteries Prepared by a Ballâ€Millingâ€Assisted Method. European Journal of Inorganic Chemistry, 2016, 2016, 3212-3218.	2.0	42
26	Enhanced high-rate performance of manganese substituted Na 3 V 2 (PO 4) 3 /C as cathode for sodium-ion batteries. Journal of Power Sources, 2016, 313, 73-80.	7.8	126
27	Advancing towards a veritable calcium-ion battery: CaCo2O4 positive electrode material. Electrochemistry Communications, 2016, 67, 59-64.	4.7	107
28	Na ₃ V ₂ (PO ₄) ₃ /C Nanorods with Improved Electrode–Electrolyte Interface As Cathode Material for Sodium-Ion Batteries. ACS Applied Materials & Interfaces, 2016, 8, 23151-23159.	8.0	92
29	Nanobelts of Beta-Sodium Vanadate as Electrode for Magnesium and Dual Magnesium-Sodium Batteries. Journal of the Electrochemical Society, 2016, 163, A2781-A2790.	2.9	24
30	Reversible intercalation of aluminium into vanadium pentoxide xerogel for aqueous rechargeable batteries. RSC Advances, 2016, 6, 62157-62164.	3.6	91
31	High Performance Full Sodiumâ€lon Cell Based on a Nanostructured Transition Metal Oxide as Negative Electrode. Chemistry - A European Journal, 2015, 21, 14879-14885.	3.3	28
32	High-intensity ultrasonication as a way to prepare graphene/amorphous iron oxyhydroxide hybrid electrode with high capacity in lithium battery. Ultrasonics Sonochemistry, 2015, 24, 238-246.	8.2	12
33	A fractal-like electrode based on double-wall nanotubes of anatase exhibiting improved electrochemical behaviour in both lithium and sodium batteries. Physical Chemistry Chemical Physics, 2015, 17, 4687-4695.	2.8	20
34	Self-Organized, Anatase, Double-Walled Nanotubes Prepared by Anodization under Voltage Ramp as Negative Electrode for Aqueous Sodium-Ion Batteries. Journal of the Electrochemical Society, 2015, 162, A3007-A3012.	2.9	12
35	Relationships between the length of self-organized titania nanotube, adsorbed solvents and its electrochemical reaction with lithium. Journal of Solid State Electrochemistry, 2015, 19, 3013-3018.	2.5	1
36	Self-assembled Li4Ti5O12/TiO2/Li3PO4 for integrated Li–ion microbatteries. Electrochemistry Communications, 2015, 56, 61-64.	4.7	12

#	Article	IF	CITATIONS
37	Electrochemical and chemical insertion/deinsertion of magnesium in spinel-type MgMn ₂ O ₄ and lambda-MnO ₂ for both aqueous and non-aqueous magnesium-ion batteries. CrystEngComm, 2015, 17, 8728-8735.	2.6	71
38	Self-organized sodium titanate/titania nanoforest for the negative electrode of sodium-ion microbatteries. Journal of Alloys and Compounds, 2015, 646, 816-826.	5.5	13
39	Effect of aluminum doping on carbon loaded Na3V2(PO4)3 as cathode material for sodium-ion batteries. Electrochimica Acta, 2015, 180, 824-830.	5.2	115
40	Improving the Electrochemistry of Anatase for Sodium Ion Batteries by Using Self-Organized TiO2 Nanotubes Prepared by Anodization under Variable Voltage. ECS Transactions, 2014, 62, 45-56.	0.5	3
41	Self-organized amorphous titania nanotubes with deposited graphene film like a new heterostructured electrode for lithium ion batteries. Journal of Power Sources, 2014, 248, 886-893.	7.8	35
42	Microstructure of the epitaxial film of anatase nanotubes obtained at high voltage and the mechanism of its electrochemical reaction with sodium. CrystEngComm, 2014, 16, 4602-4609.	2.6	71
43	Improving the Performance of Titania Nanotube Battery Materials by Surface Modification with Lithium Phosphate. ACS Applied Materials & Interfaces, 2014, 6, 5669-5678.	8.0	28
44	Improving the electrochemistry and microstructure of nickel electrode by deposition on anodized titanium substrate for the electrocatalytic oxidation of methanol and ethanol. Ionics, 2014, 20, 1591-1597.	2.4	5
45	Electrodeposition of copper–tin nanowires on Ti foils for rechargeable lithium micro-batteries with high energy density. Journal of Alloys and Compounds, 2014, 585, 331-336.	5.5	26
46	Nanoscale Tin Heterostructures for Improved Energy Storage in Lithium Batteries. ACS Symposium Series, 2013, , 1-22.	0.5	0
47	Improved coulombic efficiency in nanocomposite thin film based on electrodeposited-oxidized FeNi-electrodes for lithium-ion batteries. Journal of Alloys and Compounds, 2013, 557, 82-90.	5.5	8
48	Optimization of tin intermetallics and composite electrodes for lithium-ion batteries obtained by sonochemical synthesis. Journal of Solid State Electrochemistry, 2013, 17, 2495-2501.	2.5	11
49	Electrodeposited CoSn2 on nickel open-cell foam: advancing towards high power lithium ion and sodium ion batteries. CrystEngComm, 2013, 15, 9196.	2.6	32
50	Controlled Growth and Application in Lithium and Sodium Batteries of High-Aspect-Ratio, Self-Organized Titania Nanotubes. Journal of the Electrochemical Society, 2013, 160, A1390-A1398.	2.9	35
51	Improved Energy Storage Solution Based on Hybrid Oxide Materials. ACS Sustainable Chemistry and Engineering, 2013, 1, 46-56.	6.7	61
52	Improving the Electrochemical Properties of Self-Organized Titanium Dioxide Nanotubes in Lithium Batteries by Surface Polyacrylonitrile Electropolymerization. Journal of the Electrochemical Society, 2013, 160, A3026-A3035.	2.9	12
53	Preparation and Characterization of Intermetallic Nanoparticles for Lithium Ion Batteries. Journal of Nano Research, 2012, 17, 53-65.	0.8	1
54	Electrodeposited Polyacrylonitrile and Cobalt-Tin Composite Thin Film on Titanium Substrate. Journal of the Electrochemical Society, 2012, 159, A1028-A1033.	2.9	17

#	Article	IF	CITATIONS
55	Long-Length Titania Nanotubes Obtained by High-Voltage Anodization and High-Intensity Ultrasonication for Superior Capacity Electrode. Journal of Physical Chemistry C, 2012, 116, 20182-20190.	3.1	39
56	Nanocrystalline CoSn2-carbon composite electrode prepared by using sonochemistry. Ultrasonics Sonochemistry, 2012, 19, 352-357.	8.2	23
57	Tin-Based composite Materials Fabricated by Anodic Oxidation for the Negative Electrode of Li-Ion Batteries. Journal of the Electrochemical Society, 2011, 158, A1094.	2.9	31
58	Nanocrystalline Fe1â^'xCoxSn2 solid solutions prepared by reduction of salts in tetraethylene glycol. Journal of Alloys and Compounds, 2011, 509, 3074-3079.	5.5	15
59	CoSn-graphite electrode material prepared by using the polyol method and high-intensity ultrasonication. Electrochimica Acta, 2011, 56, 9808-9817.	5.2	18
60	The electrochemical behavior of low-temperature synthesized FeSn2 nanoparticles as anode materials for Li-ion batteries. Journal of Power Sources, 2011, 196, 6768-6771.	7.8	25
61	Comparative study of composite electrodes containing tin, polyacrylonitrile and cobalt or iron. Journal of Power Sources, 2011, 196, 2893-2898.	7.8	9
62	Recent advances in nanocrystalline intermetallic tin compounds for the negative electrode of lithium ion batteries. , 2011, , .		0
63	FeSn2-Polyacrylonitrile Electrode Obtained by Using High-Intensity Ultrasonication. Electrochemical and Solid-State Letters, 2011, 14, A148.	2.2	10
64	Cobalt and tin oxalates and PAN mixture as a new electrode material for lithium ion batteries. Journal of Electroanalytical Chemistry, 2010, 642, 143-149.	3.8	16
65	Electron Paramagnetic Resonance, X-ray Diffraction, Mössbauer Spectroscopy, and Electrochemical Studies on Nanocrystalline FeSn ₂ Obtained by Reduction of Salts in Tetraethylene Glycol. Chemistry of Materials, 2010, 22, 2268-2275.	6.7	31
66	PAN-Encapsulated Nanocrystalline CoSn[sub 2] Particles as Negative Electrode Active Material for Lithium-Ion Batteries. Journal of the Electrochemical Society, 2010, 157, A666.	2.9	15
67	Fe3+ and Ni3+ impurity distribution and electrochemical performance of LiCoO2 electrode materials for lithium ion batteries. Journal of Power Sources, 2009, 194, 494-501.	7.8	18
68	Effect of oxidation on the performance of low-temperature petroleum cokes as anodes in lithium ion batteries. Journal of Applied Electrochemistry, 2009, 39, 899-906.	2.9	2
69	Effects of heteroatoms and nanosize on tin-based electrodes. Journal of Power Sources, 2009, 189, 309-314.	7.8	21
70	Electrochemical performance and local cationic distribution in layered LiNi1/2Mn1/2O2 electrodes for lithium ion batteries. Electrochimica Acta, 2009, 54, 1694-1701.	5.2	20
71	Local Coordination of Fe ³⁺ in Layered LiCo _{1â^²<i>y</i>} Al _{<i>y</i>} O ₂ Oxides Determined by High-Frequency Electron Paramagnetic Resonance Spectroscopy. Inorganic Chemistry, 2009, 48, 4798-4805.	4.0	10
72	Effect of the synthesis procedure on the local cationic distribution in layered LiNi1/2Mn1/2O2. Journal of Alloys and Compounds, 2009, 475, 96-101.	5.5	23

#	Article	IF	CITATIONS
73	Polyacrylonitrile and cobalt–tin compounds based composite and its electrochemical properties in lithium ion batteries. Journal of Alloys and Compounds, 2009, 485, 385-390.	5.5	9
74	A 57Fe Mössbauer spectroscopy study of iron nanoparticles obtained in situ in conversion ferrite electrodes. Hyperfine Interactions, 2008, 183, 1-5.	0.5	2
75	119Sn Mössbauer spectroscopy: a powerful tool to unfold the reaction mechanism in advanced electrodes for lithium-ion batteries. Hyperfine Interactions, 2008, 187, 13-17.	0.5	10
76	Structural and Electrochemical Properties of Micro―and Nanoâ€Crystalline CoSn Electrode Materials. ChemPhysChem, 2008, 9, 1171-1177.	2.1	33
77	Electrochemical Reaction of Lithium with Nanocrystalline CoSn[sub 3]. Electrochemical and Solid-State Letters, 2008, 11, A209.	2.2	26
78	Improved Electrochemical Performance of Tin Dioxide Using a Tin Phosphate-Based Coating. Electrochemical and Solid-State Letters, 2007, 10, A286.	2.2	8
79	Formation and Oxidation of Nanosized Metal Particles by Electrochemical Reaction of Li and Na with NiCo2O4:  X-ray Absorption Spectroscopic Study. Journal of Physical Chemistry C, 2007, 111, 4636-4642.	3.1	103
80	Lithium Insertion into Modified Conducting Domains of Graphitized Carbon Nanotubes. Journal of the Electrochemical Society, 2007, 154, A964.	2.9	14
81	Unfolding Tin–Cobalt Interactions in Oxide-Based Composite Electrodes for Li-Ion Batteries by Mössbauer Spectroscopy. ChemPhysChem, 2007, 8, 80-86.	2.1	8
82	Tin–carbon composites as anodic material in Li-ion batteries obtained by copyrolysis of petroleum vacuum residue and SnO2. Carbon, 2007, 45, 1396-1409.	10.3	29
83	Comparative analysis of the changes in local Ni/Mn environment in lithium–nickel–manganese oxides with layered and spinel structure during electrochemical extraction and reinsertion of lithium. Journal of Power Sources, 2007, 174, 519-523.	7.8	15
84	New tin-based materials containing cobalt and carbon for lithium-ion batteries. Journal of Electroanalytical Chemistry, 2007, 605, 98-108.	3.8	54
85	Effect of the high pressure on the structure and intercalation properties of lithium–nickel–manganese oxides. Journal of Solid State Chemistry, 2007, 180, 1816-1825.	2.9	9
86	Changes in local Ni/Mn environment in layered LiMgxNi0.5â^'xMn0.5O2(0 ≤ ≤0.10) after electrochemical extraction and reinsertion of lithium. Journal of Materials Chemistry, 2006, 16, 359-369.	6.7	28
87	EPR, NMR, and Electrochemical Studies of Surface-Modified Carbon Microbeads. Chemistry of Materials, 2006, 18, 2293-2301.	6.7	71
88	Electrochemical improvement of low-temperature petroleum cokes by chemical oxidation with H2O2 for their use as anodes in lithium ion batteries. Electrochimica Acta, 2006, 52, 1281-1289.	5.2	7
89	Iron–carbon composites as electrode materials in lithium batteries. Carbon, 2006, 44, 1762-1772.	10.3	20
90	Electrochemical and 119Sn Mössbauer studies of the reaction of Co2SnO4 with lithium. Electrochemistry Communications, 2006, 8, 731-736.	4.7	34

#	Article	IF	CITATIONS
91	EPR studies of Li deintercalation from LiCoMnO4 spinel-type electrode active material. Journal of Power Sources, 2006, 159, 1389-1394.	7.8	31
92	Influence of the oxidative stabilisation treatment time on the electrochemical performance of anthracene oils cokes as electrode materials for lithium batteries. Journal of Power Sources, 2006, 161, 1324-1334.	7.8	8
93	X-ray Absorption Spectroscopic Study of LiCoO2 as the Negative Electrode of Lithium-Ion Batteries. ChemPhysChem, 2006, 7, 1086-1091.	2.1	25
94	Changes in the Mechanism of Lithium Extraction by Metal Substitution in High-Voltage Spinel Electrodes. ECS Transactions, 2006, 3, 155-164.	0.5	2
95	Electrochemical Lithium and Sodium Reactions with Carbon Microspheres Obtained by Polycondensation. ECS Transactions, 2006, 3, 191-198.	0.5	1
96	Modification of the Electrochemical Behavior of Carbon Nanofibers for Lithium-Ion Batteries by Impregnation, and Thermal and Hydrothermal Treatments. ECS Transactions, 2006, 1, 9-16.	0.5	1
97	High-pressure synthesis and electrochemical behavior of layered oxides. Journal of Solid State Chemistry, 2005, 178, 2692-2700.	2.9	17
98	Rotor blade grinding and re-annealing of LiCoO2: SEM, XPS, EIS and electrochemical study. Journal of Electroanalytical Chemistry, 2005, 584, 147-156.	3.8	28
99	Composite electrode materials for lithium-ion batteries obtained by metal oxide addition to petroleum vacuum residua. Carbon, 2005, 43, 923-936.	10.3	12
100	Influence of oxidative stabilization on the electrochemical behaviour of coal tar pitch derived carbons in lithium batteries. Electrochimica Acta, 2005, 50, 1225-1232.	5.2	22
101	Effect of oxidative stabilization on the electrochemical performance of carbon mesophases as electrode materials for lithium batteries. Journal of Solid State Electrochemistry, 2005, 9, 627-633.	2.5	5
102	Optimization of the Electrochemical Behavior of Vapor Grown Carbon Nanofibers for Lithium-Ion Batteries by Impregnation, and Thermal and Hydrothermal Treatments. Journal of the Electrochemical Society, 2005, 152, A1797.	2.9	24
103	Carbon Microspheres Obtained from Resorcinol-Formaldehyde as High-Capacity Electrodes for Sodium-Ion Batteries. Electrochemical and Solid-State Letters, 2005, 8, A222.	2.2	313
104	Photoelectron Spectroscopic Study of the Reaction of Li and Na with NiCo2O4. Chemistry of Materials, 2005, 17, 5202-5208.	6.7	85
105	Synergistic Effects of Double Substitution in LiNi[sub 0.5â^'y]Fe[sub y]Mn[sub 1.5]O[sub 4] Spinel as 5 V Cathode Materials. Journal of the Electrochemical Society, 2005, 152, A13.	2.9	53
106	Modification of Petroleum Coke for Lithium-Ion Batteries by Heat-Treatment with Iron Oxide. Journal of the Electrochemical Society, 2004, 151, A2113.	2.9	19
107	Nanodispersed iron, tin and antimony in vapour grown carbon fibres for lithium batteries: an EPR and electrochemical study. Carbon, 2004, 42, 2153-2161.	10.3	21
108	X-ray diffraction and electrochemical impedance spectroscopy study of zinc coated LiNi0.5Mn1.5O4 electrodes. Journal of Electroanalytical Chemistry, 2004, 566, 187-192.	3.8	121

#	Article	IF	CITATIONS
109	57Fe Mössbauer spectroscopy and surface modification with zinc and magnesium of LiCo0.8Fe0.2MnO4 5V electrodes. Journal of Power Sources, 2004, 135, 281-285.	7.8	6
110	Layered solid solutions of LiNi1â^'xCoxO2with α-LiGaO2obtained under high oxygen pressure. Journal of Materials Chemistry, 2004, 14, 366-373.	6.7	7
111	Nanodispersed iron, tin and antimony in vapour grown carbon fibres for lithium batteries: an EPR and electrochemical study. Carbon, 2004, 42, 2153-2153.	10.3	1
112	Changes in the Local Structure of LiMgyNi0.5-yMn1.5O4Electrode Materials during Lithium Extraction. Chemistry of Materials, 2004, 16, 1573-1579.	6.7	107
113	Local Coordination of Low-Spin Ni3+ Probes in Trigonal LiAlyCo1-yO2 Monitored by HF-EPR. Journal of Physical Chemistry B, 2004, 108, 4053-4057.	2.6	29
114	New LiNi[sub y]Co[sub 1â^'2y]Mn[sub 1+y]O[sub 4] Spinel Oxide Solid Solutions as 5 V Electrode Material for Li-Ion Batteries. Journal of the Electrochemical Society, 2004, 151, A53.	2.9	48
115	Electrochemical, textural and microstructural effects of mechanical grinding on graphitized petroleum coke for lithium and sodium batteries. Carbon, 2003, 41, 3003-3013.	10.3	57
116	Lithium/nickel mixing in the transition metal layers of lithium nickelate: high-pressure synthesis of layered Li[LixNi1â ^{~x} x]O2 oxides as cathode materials for lithium-ion batteries. Solid State Ionics, 2003, 161, 197-204.	2.7	54
117	Changes in oxidation state and magnetic order of iron atoms during the electrochemical reaction of lithium with NiFe2O4. Electrochemistry Communications, 2003, 5, 16-21.	4.7	109
118	Structural and Electrochemical Study of New LiNi0.5TixMn1.5-xO4Spinel Oxides for 5-V Cathode Materials. Chemistry of Materials, 2003, 15, 2376-2382.	6.7	121
119	Electron Paramagnetic Resonance and Solid-State NMR Study of Cation Distribution in LiGayCo1-yO2and Effects on the Electrochemical Oxidation. Journal of Physical Chemistry B, 2003, 107, 4290-4295.	2.6	22
120	Electrochemical,6Li MAS NMR, and X-ray and Neutron Diffraction Study of LiCoxFeyMn2-(x+y)O4Spinel Oxides for High-Voltage Cathode Materials. Chemistry of Materials, 2003, 15, 1210-1216.	6.7	32
121	Cation order/disorder in lithium transition-metal oxides as insertion electrodes for lithium-ion batteries. Pure and Applied Chemistry, 2002, 74, 1885-1894.	1.9	36
122	Negative Electrodes for Lithium- and Sodium-Ion Batteries Obtained by Heat-Treatment of Petroleum Cokes below 1000°C. Journal of the Electrochemical Society, 2002, 149, A201.	2.9	115
123	High-pressure synthesis of Ga-substituted LiCoO2with layered crystal structure. Journal of Materials Chemistry, 2002, 12, 2501-2506.	6.7	15
124	New NixMg6â^'xMnO8 Mixed Oxides as Active Materials for the Negative Electrode of Lithium-Ion Cells. Journal of Solid State Chemistry, 2002, 166, 330-335.	2.9	21
125	Evaluation of discharge and cycling properties of skutterudite-type Co1â^'2yFeyNiySb3 compounds in lithium cells. Journal of Power Sources, 2002, 107, 74-79.	7.8	24
126	Electrochemical reaction of lithium with CoP3. Journal of Power Sources, 2002, 109, 308-312.	7.8	117

#	Article	IF	CITATIONS
127	Electrochemical reactions of lithium with Li2ZnGe and Li2ZnSi. Electrochimica Acta, 2002, 47, 1115-1120.	5.2	25
128	Optimizing preparation conditions for 5 V electrode performance, and structural changes in Li1â''xNi0.5Mn1.5O4 spinel. Electrochimica Acta, 2002, 47, 1829-1835.	5.2	134
129	EPR study on petroleum cokes annealed at different temperatures and used in lithium and sodium batteries. Carbon, 2002, 40, 2301-2306.	10.3	52
130	NiCo2O4Spinel:Â First Report on a Transition Metal Oxide for the Negative Electrode of Sodium-Ion Batteries. Chemistry of Materials, 2002, 14, 2847-2848.	6.7	458
131	Cobalt(III) Effect on27Al NMR Chemical Shifts in LiAlxCo1-xO2. Journal of Physical Chemistry B, 2001, 105, 8081-8087.	2.6	40
132	Tin oxalate as a precursor of tin dioxide and electrode materials for lithium-ion batteries. Journal of Solid State Electrochemistry, 2001, 6, 55-62.	2.5	31
133	Carbon black: a promising electrode material for sodium-ion batteries. Electrochemistry Communications, 2001, 3, 639-642.	4.7	355
134	Characterisation of mesocarbon microbeads (MCMB) as active electrode material in lithium and sodium cells. Carbon, 2000, 38, 1031-1041.	10.3	136
135	X-ray and neutron diffraction, 57Fe Mössbauer spectroscopy and X-ray absorption spectroscopy studies of iron-substituted lithium cobaltate. Solid State Communications, 2000, 115, 1-6.	1.9	9
136	Aluminium coordination in LiNi1â^'yAlyO2 solid solutions. Solid State Ionics, 2000, 128, 1-10.	2.7	42
137	Preparation, Sintering, and Electrochemical Properties of Tin Dioxide and Al-Doped Tin Dioxides Obtained from Citrate Precursors. Chemistry of Materials, 2000, 12, 3044-3051.	6.7	27
138	X-ray diffraction, 57Fe Mössbauer and step potential electrochemical spectroscopy study of LiFeyCo1â^'yO2 compounds. Journal of Power Sources, 1999, 81-82, 547-553.	7.8	48
139	Recent advances in the study of layered lithium transition metal oxides and their application as intercalation electrodes. Journal of Solid State Electrochemistry, 1999, 3, 121-134.	2.5	74
140	Electrochemical reaction of lithium with the CoSb3 skutterudite. Journal of Materials Chemistry, 1999, 9, 2517-2521.	6.7	128
141	13C, 1H, 6Li Magic-Angle Spinning Nuclear Magnetic Resonance, Electron Paramagnetic Resonance, and Fourier Transform Infrared Study of Intercalation Electrodes Based in Ultrasoft Carbons Obtained below 3100 K. Chemistry of Materials, 1999, 11, 52-60.	6.7	25
142	SPES, 6Li MAS NMR, and Ni3+ EPR evidence for the formation of Co2+-containing spinel phases in LiCoO2 cycled electrode materials. Journal of Electroanalytical Chemistry, 1998, 454, 173-181.	3.8	16
143	X-ray Diffraction, EPR, and 6Li and 27Al MAS NMR Study of LiAlO2â^'LiCoO2 Solid Solutions. Inorganic Chemistry, 1998, 37, 264-269.	4.0	62
144	Lithiumâ^'Nickel Citrate Precursors for the Preparation of LiNiO2 Insertion Electrodes. Chemistry of Materials, 1997, 9, 2145-2155.	6.7	51

#	Article	IF	CITATIONS
145	Ultrafine layered LiCoO2 obtained from citrate precursors. Ionics, 1997, 3, 1-15.	2.4	2
146	EPR studies of Lilâ^'x(NiyColâ^'y)1+xO2 solid solutions. Solid State Communications, 1997, 102, 457-462.	1.9	34
147	Structure and Electrochemical Properties of Boron-Doped LiCoO2. Journal of Solid State Chemistry, 1997, 134, 265-273.	2.9	140
148	Lithiumâ^'Cobalt Citrate Precursors in the Preparation of Intercalation Electrode Materials. Chemistry of Materials, 1996, 8, 1429-1440.	6.7	107
149	Microstructure and intercalation properties of petrol cokes obtained at 1400°C. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 1996, 39, 216-223.	3.5	13

150 Structure and Electrochemical Properties of Lil â^i x  ( Ni y Col â^i y  ) l + x  O 2 at O°C. Journal of the Electrochemical Society, 1995, 142, 3997-4005.