Ãngeles LÃ³pez-GonzÃ;lvez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5441223/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Noninvasive monitoring of evolving urinary metabolic patterns in neonatal encephalopathy. Pediatric Research, 2022, 91, 598-605.	2.3	9
2	Profiling of polar ionogenic metabolites in Polish wines by capillary electrophoresisâ€mass spectrometry. Electrophoresis, 2022, 43, 1814-1821.	2.4	3
3	Energy metabolism as a target for cyclobenzaprine: A drug candidate against Visceral Leishmaniasis. Bioorganic Chemistry, 2022, 127, 106009.	4.1	0
4	Enhancing confidence of metabolite annotation in Capillary Electrophoresis-Mass Spectrometry untargeted metabolomics with relative migration time and in-source fragmentation. Journal of Chromatography A, 2021, 1635, 461758.	3.7	23
5	Comprehensive Plasma Metabolomic Profile of Patients with Advanced Neuroendocrine Tumors (NETs). Diagnostic and Biological Relevance. Cancers, 2021, 13, 2634.	3.7	9
6	Metabolomic Reprogramming of C57BL/6-Macrophages during Early Infection with L. amazonensis. International Journal of Molecular Sciences, 2021, 22, 6883.	4.1	11
7	Recent Developments along the Analytical Process for Metabolomics Workflows. Analytical Chemistry, 2020, 92, 203-226.	6.5	72
8	Capillary Electrophoresis-Mass Spectrometry at Trial by Metabo-Ring: Effective Electrophoretic Mobility for Reproducible and Robust Compound Annotation. Analytical Chemistry, 2020, 92, 14103-14112.	6.5	44
9	Unraveling the Cyclization of <scp>l</scp> -Argininosuccinic Acid in Biological Samples: A Study via Mass Spectrometry and NMR Spectroscopy. Analytical Chemistry, 2020, 92, 12891-12899.	6.5	4
10	Oxidized lipids in the metabolic profiling of neuroendocrine tumors – Analytical challenges and biological implications. Journal of Chromatography A, 2020, 1625, 461233.	3.7	9
11	Unveiling the Fragmentation Mechanisms of Modified Amino Acids as the Key for Their Targeted Identification. Analytical Chemistry, 2020, 92, 4848-4857.	6.5	18
12	Plasma Metabolic Signature of Atherosclerosis Progression and Colchicine Treatment in Rabbits. Scientific Reports, 2020, 10, 7072.	3.3	7
13	Capillary Electrophoresis Mass Spectrometry as a Tool for Untargeted Metabolomics. Methods in Molecular Biology, 2019, 1978, 55-77.	0.9	12
14	Mapping Alterations Induced by Long-Term Axenic Cultivation of Leishmania amazonensis Promastigotes With a Multiplatform Metabolomic Fingerprint Approach. Frontiers in Cellular and Infection Microbiology, 2019, 9, 403.	3.9	3
15	Metabolomic Profile of BALB/c Macrophages Infected with Leishmania amazonensis: Deciphering L-Arginine Metabolism. International Journal of Molecular Sciences, 2019, 20, 6248.	4.1	24
16	Metabolomics Analysis of Leishmania by Capillary Electrophoresis and Mass Spectrometry. Methods in Molecular Biology, 2019, 1859, 253-260.	0.9	2
17	Repression of drought-induced cysteine-protease genes alters barley leaf structure and responses to abiotic and biotic stresses. Journal of Experimental Botany, 2019, 70, 2143-2155.	4.8	26

18 Metabolic Phenotyping Using Capillary Electrophoresis Mass Spectrometry. , 2019, , 171-204.

ÂNGELES LÂ³PEZ-GONZÂILVEZ

#	Article	IF	CITATIONS
19	Complex Interplay between Sphingolipid and Sterol Metabolism Revealed by Perturbations to the Leishmania Metabolome Caused by Miltefosine. Antimicrobial Agents and Chemotherapy, 2018, 62, .	3.2	31
20	Metabolic Clustering Analysis as a Strategy for Compound Selection in the Drug Discovery Pipeline for Leishmaniasis. ACS Chemical Biology, 2018, 13, 1361-1369.	3.4	15
21	Molecular Basis of the Leishmanicidal Activity of the Antidepressant Sertraline as a Drug Repurposing Candidate. Antimicrobial Agents and Chemotherapy, 2018, 62, .	3.2	17
22	A review of validated biomarkers obtained through metabolomics. Expert Review of Molecular Diagnostics, 2018, 18, 557-575.	3.1	71
23	CE-MS for Metabolomics: A Comparison with Other Techniques. New Developments in Mass Spectrometry, 2018, , 161-183.	0.2	1
24	Capillary electrophoresis mass spectrometry as a tool for untargeted metabolomics. Bioanalysis, 2017, 9, 99-130.	1.5	72
25	Metabolomics as a tool to evaluate the toxicity of formulations containing amphotericin B, an antileishmanial drug. Toxicology Research, 2016, 5, 1720-1732.	2.1	7
26	HvPap-1 C1A Protease and HvCPI-2 Cystatin Contribute to Barley Grain Filling and Germination. Plant Physiology, 2016, 170, 2511-2524.	4.8	33
27	Inâ€source fragmentation and correlation analysis as tools for metabolite identification exemplified with CEâ€TOF untargeted metabolomics. Electrophoresis, 2015, 36, 2188-2195.	2.4	32
28	Missing value imputation strategies for metabolomics data. Electrophoresis, 2015, 36, 3050-3060.	2.4	118
29	Capillary electrophoresis reveals polyamine metabolism modulation in <i>Leishmania (Leishmania) amazonensis</i> wildâ€type and arginaseâ€knockout mutants under arginine starvation. Electrophoresis, 2015, 36, 2314-2323.	2.4	30
30	Interlaboratory study to evaluate the robustness of capillary electrophoresisâ€mass spectrometry for peptide mapping. Journal of Separation Science, 2015, 38, 3262-3270.	2.5	36
31	Differential Gene Expression and Infection Profiles of Cutaneous and Mucosal Leishmania braziliensis Isolates from the Same Patient. PLoS Neglected Tropical Diseases, 2015, 9, e0004018.	3.0	44
32	Multiplatform characterization of dynamic changes in breast milk during lactation. Electrophoresis, 2015, 36, 2269-2285.	2.4	79
33	A Multiplatform Metabolomic Approach to the Basis of Antimonial Action and Resistance in Leishmania infantum. PLoS ONE, 2015, 10, e0130675.	2.5	39
34	Multi-analytical platform metabolomic approach to study miltefosine mechanism of action and resistance in Leishmania. Analytical and Bioanalytical Chemistry, 2014, 406, 3459-3476.	3.7	64
35	<scp>CE</scp> â€ <scp>ESI</scp> â€ <scp>MS</scp> metabolic fingerprinting of <i><scp>L</scp>eishmania</i> resistance to antimony treatment. Electrophoresis, 2012, 33, 1901-1910.	2.4	50
36	Ultrasound-assisted extraction for rapid determination of Zn, Cu, Fe, Mg and Mn in liver of diabetic rats under different antioxidant treatments. Journal of Pharmaceutical and Biomedical Analysis, 2009, 49, 1040-1044.	2.8	6

ÂNGELES LÂ³PEZ-GONZÂILVEZ

#	Article	IF	CITATIONS
37	Capillary electrophoresis for short chain organic acids in faeces. Journal of Pharmaceutical and Biomedical Analysis, 2008, 46, 356-361.	2.8	50
38	Validated flow-injection method for rapid aluminium determination in anti-perspirants. Journal of Pharmaceutical and Biomedical Analysis, 2008, 48, 340-346.	2.8	11
39	Uptake and Distribution of Zinc, Cadmium, Lead and Copper in <i>Brassica napus var. oleĀfera</i> and <i>Helianthus annus</i> Grown in Contaminated Soils. International Journal of Phytoremediation, 2003, 5, 153-167.	3.1	32
40	Development and validation of extraction methods for determination of zinc and arsenic speciation in soils using focused ultrasound. Analytica Chimica Acta, 2001, 442, 305-318.	5.4	80
41	Tolerance of Some Mediterranean Crops to Copper and Zinc: Implications in Toxic Metal Clean Up. Chemistry and Ecology, 1999, 16, 297-316.	1.6	5
42	Anionic cartridge preconcentrators for inorganic arsenic, monomethylarsonate and dimethylarsinate determination by on-line HPLC-HG-AAS. Fresenius' Journal of Analytical Chemistry, 1997, 357, 844-849.	1.5	24
43	Stability studies of arsenate, monomethylarsonate, dimethylarsinate, arsenobetaine and arsenocholine in deionized water, urine and clean-up dry residue from urine samples and determination by liquid chromatography with microwave-assisted oxidation-hydride generation atomic absorption spectrometric detection. Analytica Chimica Acta, 1997, 340, 209-220.	5.4	61
44	Urine clean-up method for determination of six arsenic species by LC-AAS involving microwave assisted oxidation and hydride generation. Chromatographia, 1996, 43, 507-512.	1.3	21
45	Determination of toxic and non-toxic arsenic species in urine by microwave assisted mineralization and hydride generation atomic absorption spectrometry. Mikrochimica Acta, 1995, 120, 301-308.	5.0	19
46	Evaluation of high-performance liquid chromatography for the separation and determination of arsenic species by on-line high-performance liquid chromatographic-hydride generation-atomic absorption spectrometry. Biomedical Applications, 1995, 666, 101-109.	1.7	27
47	On-line microwave oxidation for the determination of organoarsenic compounds by high-performance liquid chromatography–hydride generation atomic absorption spectrometry. Journal of Analytical Atomic Spectrometry, 1994, 9, 291-295.	3.0	49
48	Determination of six arsenic species by high-performance liquid chromatography ? hydride generation ? atomic absorption spectrometry with on-line thermo-oxidation. Fresenius' Journal of Analytical Chemistry, 1993, 346, 643-647.	1.5	54
49	Generation of AsH3 from As(V) in the absence of KI as prereducing agent: Speciation of inorganic arsenic. Talanta, 1992, 39, 1343-1348.	5.5	31