Changqiang Wu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5441010/publications.pdf

Version: 2024-02-01

623188 642321 23 616 14 23 citations g-index h-index papers 25 25 25 1081 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Surface and Interfacial Engineering of Iron Oxide Nanoplates for Highly Efficient Magnetic Resonance Angiography. ACS Nano, 2015, 9, 3012-3022.	7.3	124
2	Synthesis and characterization of gold nanoparticles from <i>Abies spectabilis</i> extract and its anticancer activity on bladder cancer T24 cells. Artificial Cells, Nanomedicine and Biotechnology, 2019, 47, 512-523.	1.9	71
3	Rigid Mn(ii) chelate as efficient MRI contrast agent for vascular imaging. Dalton Transactions, 2012, 41, 14480.	1.6	51
4	Synthesis and characterization of magnetic dextran nanogel doped with iron oxide nanoparticles as magnetic resonance imaging probe. International Journal of Biological Macromolecules, 2019, 128, 768-774.	3.6	47
5	Negatively Charged Magnetite Nanoparticle Clusters as Efficient MRI Probes for Dendritic Cell Labeling and In Vivo Tracking. Advanced Functional Materials, 2015, 25, 3581-3591.	7.8	43
6	Superparamagnetic MRI probes for inÂvivo tracking of dendritic cell migration with a clinical 3ÂT scanner. Biomaterials, 2015, 58, 63-71.	5.7	39
7	Reduction of polyethylenimine-coated iron oxide nanoparticles induced autophagy and cytotoxicity by lactosylation. International Journal of Energy Production and Management, 2016, 3, 223-229.	1.9	29
8	Assembly-Controlled Magnetic Nanoparticle Clusters as MRI Contrast Agents. ACS Biomaterials Science and Engineering, 2020, 6, 2533-2542.	2.6	28
9	Multivalent manganese complex decorated amphiphilic dextran micelles as sensitive MRI probes. Journal of Materials Chemistry B, 2015, 3, 1470-1473.	2.9	26
10	Bombesin functionalized ⁶⁴ Cu-copper sulfide nanoparticles for targeted imaging of orthotopic prostate cancer. Nanomedicine, 2018, 13, 1695-1705.	1.7	23
11	Size and PEG Length-Controlled PEGylated Monocrystalline Superparamagnetic Iron Oxide Nanocomposite for MRI Contrast Agent. International Journal of Nanomedicine, 2021, Volume 16, 201-211.	3.3	23
12	Preparation of magnetic microgels based on dextran for stimuli-responsive release of doxorubicin. Journal of Magnetism and Magnetic Materials, 2021, 517, 167394.	1.0	22
13	Mn(II) Complex of Lipophilic Group-Modified Ethylenediaminetetraacetic Acid (EDTA) as a New Hepatobiliary MRI Contrast Agent. Journal of Medicinal Chemistry, 2021, 64, 9182-9192.	2.9	19
14	<p>Bombesin-functionalized superparamagnetic iron oxide nanoparticles for dual-modality MR/NIRFI in mouse models of breast cancer</p> . International Journal of Nanomedicine, 2019, Volume 14, 6721-6732.	3.3	17
15	Near-infrared fluorescent amphiphilic polycation wrapped magnetite nanoparticles as multimodality probes. Science Bulletin, 2012, 57, 4012-4018.	1.7	14
16	PEGylated amphiphilic polymeric manganese(<scp>ii</scp>) complexes as magnetic resonance angiographic agents. Journal of Materials Chemistry B, 2022, 10, 2204-2214.	2.9	9
17	Poly(ethylene glycol) modified Mn ²⁺ complexes as contrast agents with a prolonged observation window in rat MRA. RSC Advances, 2017, 7, 54603-54609.	1.7	8
18	Cisplatin and paclitaxel co-delivery nanosystem for ovarian cancer chemotherapy. International Journal of Energy Production and Management, 2021, 8, .	1.9	7

#	Article	IF	CITATIONS
19	Effects of RNAi-mediated MUC4 gene silencing on the proliferation and migration of human pancreatic carcinoma BxPC-3 cells. Oncology Reports, 2016, 36, 3449-3455.	1.2	5
20	Mn(ii) chelate-coated superparamagnetic iron oxide nanocrystals as high-efficiency magnetic resonance imaging contrast agents. Nanoscale Advances, 2020, 2, 2752-2757.	2.2	4
21	MRI Tracking of Dendritic Cells Loaded with Superparamagnetic Iron Oxide Nanoparticles. Methods in Molecular Biology, 2020, 2126, 107-116.	0.4	4
22	Tracking Tumor Cells in Lymphatics in a Mice Xenograft Model by Magnetic Resonance Imaging. Molecular Imaging, 2012, 11, 7290.2012.00007.	0.7	2
23	Editorial: Bottom-Up Approach: A Route for Effective Multi-Modal Imaging of Tumors. Frontiers in Oncology, 2021, 11, 812472.	1.3	1