List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5440030/publications.pdf Version: 2024-02-01

Δτιμ Κμανινία

#	Article	IF	CITATIONS
1	Blue afterglow in Eu2+ doped CaAl2O4 by electron irradiation. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2022, 276, 115569.	1.7	4
2	Growth and characterization of Cu2O and CuO thin films. Journal of Materials Science: Materials in Electronics, 2022, 33, 16154-16166.	1.1	2
3	Metallic to semiconducting transition and hydrophobicity properties of indium films. Vacuum, 2022, 203, 111281.	1.6	4
4	Sputter deposited crystalline V2O5, WO3 and WO3/V2O5 multi-layers for optical and electrochemical applications. Applied Surface Science, 2021, 536, 147804.	3.1	24
5	Rare earth doped CaWO4 and CaMoO4 thin films for white light emission. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2021, 39, .	0.6	5
6	Structural Characterization of Oxyhalide Materials for Solidâ€ 5 tate Batteries. Physica Status Solidi (A) Applications and Materials Science, 2021, 218, 2000682.	0.8	1
7	Structure of lithium tellurite and vanadium lithium tellurite glasses by high-energy X-ray and neutron diffraction. Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials, 2021, 77, 275-286.	0.5	3
8	Synthesis and characterization of vanadium and iron tellurite glasses for applications as thermal sensors. Solid State Sciences, 2021, 114, 106564.	1.5	8
9	Effects of thickness on the wettability and electrical properties of Sn thin films. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2021, 39, 032205.	0.6	2
10	Structural, thermal and light emission properties of Eu, Sm, Dy, Er and Mn doped CaAl2O4 and SrAl2O4. Ceramics International, 2021, 47, 14655-14664.	2.3	25
11	Thermal and light emission properties of rare earth (Eu3+, Dy3+ and Er3+), alkali (Li+, Na+ and K+) and Al3+-doped barium tellurite and boro-tellurite glasses. Journal of Materials Science: Materials in Electronics, 2021, 32, 17266-17281.	1.1	14
12	Structural, electrical and luminescence properties of M2V2O7 (M = Mg, Ca, Sr, Ba, Zn). Journal of Materials Science: Materials in Electronics, 2021, 32, 21813-21823.	1.1	10
13	Optical and thermal properties of luminescent Er ³⁺ -doped lithium tellurite glasses. Phase Transitions, 2021, 94, 856-870.	0.6	2
14	CuO-doped WO3 thin film H2S sensors. Sensors and Actuators B: Chemical, 2021, 343, 130153.	4.0	24
15	Temperature effect on the glass forming ability of strontium tellurite and lead tellurite melts. Journal of Alloys and Compounds, 2021, 881, 160595.	2.8	2
16	Neutron diffraction investigation of copper tellurite glasses with high real-space resolution. Journal of Applied Crystallography, 2021, 54, .	1.9	1
17	X-ray photoelectron spectra and electronic structure of Mo doped V2O5. Thin Solid Films, 2020, 713, 138360.	0.8	4
18	Effects of oblique angle deposition on surface wettability of Sn metal thin films. AIP Conference Proceedings, 2020, , .	0.3	0

#	Article	IF	CITATIONS
19	Structural and thermal properties of magnesium tellurite glasses. AIP Conference Proceedings, 2020, ,	0.3	0
20	Growth and characterization of hydrophobic anti-reflection CaF2 films. Journal of Materials Science: Materials in Electronics, 2020, 31, 14241-14248.	1.1	3
21	Effects of annealing temperature on structural and photoluminescence properties of Eu, Dy and Sm doped CaWO4 nanoparticles. Ceramics International, 2020, 46, 27262-27274.	2.3	17
22	Neutron diffraction investigation of strontium tellurite glass, anti-glass and crystalline phases. Phase Transitions, 2020, 93, 1016-1029.	0.6	3
23	Structure of lead silicate glasses and its correlation with photoelastic properties. Indian Journal of Physics, 2020, 95, 2187.	0.9	1
24	Synthesis and structural characterization of alumina nanoparticles. Phase Transitions, 2020, 93, 596-605.	0.6	22
25	Structural, thermal and optical characterization of co-existing glass and anti-glass phases of xLa2O3-(100-x)TeO2 and 2TiO2-xLa2O3-(98-x)TeO2 systems. Journal of Non-Crystalline Solids, 2020, 540, 120117.	1.5	9
26	Photoluminescence and thermal properties of trivalent ion-doped lanthanum tellurite anti-glass and glass composite samples. Journal of Luminescence, 2020, 225, 117375.	1.5	15
27	Structural and electrical characterization of semiconducting xCuO-(100-x)TeO2 glasses. Journal of Non-Crystalline Solids, 2020, 534, 119884.	1.5	10
28	Structural and optical characterization of Eu and Dy doped CaWO4 nanoparticles for white light emission. Journal of Alloys and Compounds, 2020, 834, 154804.	2.8	40
29	Structure of bismuth tellurite and bismuth niobium tellurite glasses and Bi ₂ Te ₄ O ₁₁ anti-glass by high energy X-ray diffraction. RSC Advances, 2020, 10, 13237-13251.	1.7	17
30	<i>In situ</i> high pressure neutron diffraction and Raman spectroscopy of 20BaO–80TeO ₂ glass. RSC Advances, 2020, 10, 42502-42511.	1.7	4
31	Structure of strontium tellurite glass, anti-glass and crystalline phases by high-energy X-ray diffraction, reverse Monte Carlo and Rietveld analysis. Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials, 2020, 76, 108-121.	0.5	10
32	Structural and optical characterization of Er-doped CaMoO ₄ down-converting phosphors. Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials, 2020, 76, 926-938.	0.5	6
33	Structure of copper tellurite and borotellurite glasses by neutron diffraction, Raman, 11B MAS-NMR and FTIR spectroscopy. Journal of Commonwealth Law and Legal Education, 2020, 61, 27-39.	0.2	4
34	Thermal characteristics and short-range structure in TiO2-TeO2 and Bi2O3-TeO2 glasses: A comparative study. AIP Conference Proceedings, 2020, , .	0.3	0
35	Vanadium Oxide Thin Films for Optical and Gas Sensing Applications. Materials Horizons, 2020, , 703-721.	0.3	1
36	Evidence of strong correlation between local structures in glass and crystalline phase of lanthanum tellurite system. AIP Conference Proceedings, 2020, , .	0.3	0

#	Article	IF	CITATIONS
37	Investigation of structural and optical characteristics of CaWO4 and BaWO4 nanoparticles. AIP Conference Proceedings, 2020, , .	0.3	1
38	Thermal, structural and photoluminescence properties of Eu3+/Er3+ doped Li2O-TeO2 glasses. AIP Conference Proceedings, 2020, , .	0.3	0
39	Study of anti-glass phases in heavy metal oxide tellurite systems. AIP Conference Proceedings, 2019, , .	0.3	3
40	Thermal, optical and Raman spectroscopy studies of lithium tellurite glasses containing molybdenum and tungsten ions. AIP Conference Proceedings, 2019, , .	0.3	2
41	Tailoring the structural, electrical, optical and wettability properties of ZnSe films by oblique angle thermal evaporation. Materials Research Express, 2019, 6, 116451.	0.8	1
42	Effects of doping of trivalent ions on glass and anti-glass phases of Bi2O3-Nb2O5-TeO2 system. Journal of Non-Crystalline Solids, 2019, 522, 119565.	1.5	6
43	Structure of xMoO ₃ -(100-x)TeO ₂ glasses by neutron diffraction and Reverse Monte Carlo modeling. Materials Research Express, 2019, 6, 075211.	0.8	4
44	Spatially resolved X-ray fluorescence, Raman and photoluminescence spectroscopy of Eu3+/Er3+ doped tellurite glasses and anti-glasses. Journal of Non-Crystalline Solids, 2019, 513, 24-35.	1.5	17
45	Structure-property correlations in molybdenum trioxide thin films and nanoparticles. Materials Research Express, 2019, 6, 086409.	0.8	9
46	Effects of oblique angle deposition on structural, electrical and wettability properties of Bi thin films grown by thermal evaporation. Applied Surface Science, 2019, 463, 45-51.	3.1	26
47	Structure of lead tellurite glasses and its relationship with stress-optic properties. Materials Research Bulletin, 2019, 110, 239-246.	2.7	16
48	Structural and thermal properties of vanadium tellurite glasses. AIP Conference Proceedings, 2018, , .	0.3	4
49	Glass and anti-glass phase co-existence and structural transitions in bismuth tellurite and bismuth niobium tellurite systems. Journal of Non-Crystalline Solids, 2018, 481, 594-603.	1.5	31
50	Effects of annealing on density, glass transition temperature and structure of tellurite, silicate and borate glasses. Journal of Non-Crystalline Solids, 2018, 500, 443-452.	1.5	13
51	Short-range structure of barium tellurite glasses and its correlation with stress-optic response. Materials Research Express, 2018, 5, 065203.	0.8	8
52	Structural, optical and thermal properties of glass and anti-glass phases in strontium tellurite and borotellurite systems doped with europium. Materials Research Bulletin, 2018, 106, 288-295.	2.7	29
53	Structural analysis of WO3-TeO2 glasses by neutron, high energy X-ray diffraction, reverse Monte Carlo simulations and XANES. Journal of Non-Crystalline Solids, 2018, 495, 27-34.	1.5	18
54	Structural, thermal and photoluminescent properties of Eu2O3-Li2O-TeOâ2 glasses. Journal of Luminescence, 2018, 204, 319-326.	1.5	21

#	Article	IF	CITATIONS
55	B O and Te O speciation in bismuth tellurite and bismuth borotellurite glasses by FTIR, 11 B MAS-NMR and Raman spectroscopy. Journal of Non-Crystalline Solids, 2017, 470, 19-26.	1.5	39
56	Short-range structure and thermal properties of alumino-tellurite glasses. Journal of Non-Crystalline Solids, 2017, 470, 14-18.	1.5	18
57	Structure-property correlations in TiO 2 -Bi 2 O 3 -B 2 O 3 -TeO 2 glasses. Journal of Non-Crystalline Solids, 2017, 470, 168-177.	1.5	106
58	Short-range structure and thermal properties of barium tellurite glasses. AIP Conference Proceedings, 2017, , .	0.3	1
59	Thermal characteristics, Raman spectra, optical and structural properties of TiO2-Bi2O3-B2O3-TeO2 glasses. AIP Conference Proceedings, 2017, , .	0.3	5
60	Structural, thermal, optical and photo-luminescent properties of barium tellurite glasses doped with rare-earth ions. Journal of Non-Crystalline Solids, 2017, 476, 67-74.	1.5	58
61	Short-range structure and thermal properties of lead tellurite glasses. AIP Conference Proceedings, 2017, , .	0.3	2
62	Structural, optical and electrical properties of crystalline V2O5 films deposited by thermal evaporation and effects of temperature on UV–vis and Raman spectra. Optik, 2017, 144, 271-280.	1.4	23
63	Structural transitions in alumina nanoparticles by heat treatment. AIP Conference Proceedings, 2016, ,	0.3	4
64	Structural, optical, dielectric and thermal properties of molybdenum tellurite and borotellurite glasses. Journal of Non-Crystalline Solids, 2016, 444, 1-10.	1.5	75
65	Structural, Optical and Gas Sensing Properties of Tungsten Trioxide Thin Films and Nanoparticles. Nanoscience and Nanotechnology Letters, 2016, 8, 283-293.	0.4	6
66	Optical properties of borotellurite glasses containing metal oxides. AIP Conference Proceedings, 2015, , .	0.3	4
67	Near-UV and blue wavelength excitable Mg0.6Ca2.16Mo0.2W0.8O6: Eu0.123+/Na0.12+ high efficiency red phosphors. Journal of Solid State Chemistry, 2015, 225, 120-134.	1.4	15
68	Effects of Al3+, W6+, Nb5+ and Pb2+ on the structure and properties of borotellurite glasses. Journal of Non-Crystalline Solids, 2015, 429, 153-163.	1.5	28
69	Structural transformations in reactively sputtered alumina films. AIP Conference Proceedings, 2014, ,	0.3	1
70	Structural characterization of borotellurite and alumino-borotellurite glasses. Journal of Non-Crystalline Solids, 2014, 404, 116-123.	1.5	61
71	Tunable color temperature solid state white light source using flux grown phosphor crystals of Eu3+, Dy3+ and Tb3+ activated calcium sodium molybdenum oxide. Optical Materials, 2014, 37, 646-655.	1.7	11
72	Structural, optical and mechanical properties of amorphous and crystalline alumina thin films. Thin Solid Films, 2014, 568, 19-24.	0.8	70

#	Article	IF	CITATIONS
73	Structure–property correlations in lead silicate glasses and crystalline phases. Phase Transitions, 2013, 86, 759-777.	0.6	21
74	Devitrification properties of lead borate glasses. Phase Transitions, 2013, 86, 541-550.	0.6	3
75	Eu ³⁺ Activated Molybdate and Tungstate Based Red Phosphors with Charge Transfer Band in Blue Region. ECS Journal of Solid State Science and Technology, 2013, 2, R3153-R3167.	0.9	120
76	Optical, thermal, and structural properties of Nb ₂ O ₅ –TeO ₂ and WO ₃ –TeO ₂ glasses. Phase Transitions, 2013, 86, 598-619.	0.6	61
77	Self-flux sodium based charge compensation in crystals of trivalent europium activated alkaline earth metal tungstate phosphors. Physica Status Solidi (A) Applications and Materials Science, 2013, 210, 2742-2750.	0.8	4
78	Interaction of reducing gases with tin oxide films prepared by reactive evaporation techniques. Vacuum, 2012, 86, 1380-1386.	1.6	6
79	Devitfrification Properties Of Bismuth Borate Glasses Doped With Trivalent Ions. , 2010, , .		0
80	Preparation and characterization of lead and zinc tellurite glasses. Journal of Non-Crystalline Solids, 2010, 356, 864-872.	1.5	73
81	Effects of Doping Trivalent Ions in Bismuth Borate Glasses. Journal of the American Ceramic Society, 2009, 92, 1036-1041.	1.9	29
82	Crystallization of bismuth borate glasses. Journal of Physics Condensed Matter, 2009, 21, 035112.	0.7	14
83	Structural investigation of bismuth borate glasses and crystalline phases. Journal of Non-Crystalline Solids, 2009, 355, 45-53.	1.5	102
84	Structure–property correlations in lead borate and borosilicate glasses doped with aluminum oxide. Journal of Non-Crystalline Solids, 2009, 355, 2323-2332.	1.5	51
85	Low-frequency noise in monodisperse platinum nanostructures near the percolation threshold. Physics of the Solid State, 2006, 48, 2194-2198.	0.2	1
86	CuO-doped SnO2 thin films as hydrogen sulfide gas sensor. Applied Physics Letters, 2003, 82, 4388-4390.	1.5	107
87	CuO–SnO2element as hydrogen sulfide gas sensor prepared by a sequential electron beam evaporation technique. Journal Physics D: Applied Physics, 2003, 36, 2377-2381.	1.3	31
88	Gamma-ray attenuation coefficients in some heavy metal oxide borate glasses at 662 keV. Nuclear Instruments & Methods in Physics Research B, 1996, 114, 217-220.	0.6	88
89	Optical properties of some heavy metal oxide borate glasses. Journal of Materials Science Letters, 1996, 15, 815-816.	0.5	11