
Dong-Xing Kou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5439962/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Surface defect ordered Cu2ZnSn(S,Se)4 solar cells with efficiency over 12% via manipulating local substitution. Journal of Energy Chemistry, 2022, 67, 555-562.	12.9	31
2	Interface Engineering for High-Efficiency Solution-Processed Cu(In,Ga)(S,Se) ₂ Solar Cells via a Novel Indium-Doped CdS Strategy. ACS Applied Materials & Interfaces, 2022, 14, 5149-5158.	8.0	6
3	Plasmonic Local Electric Field-Enhanced Interface toward High-Efficiency Cu ₂ ZnSn(S,Se) ₄ Thin-Film Solar Cells. ACS Applied Materials & Interfaces, 2022, 14, 26690-26698.	8.0	4
4	Synergistic incorporation of NaF and CsF PDT for high efficiency kesterite solar cells: unveiling of grain interior and grain boundary effects. Journal of Materials Chemistry A, 2021, 9, 413-422.	10.3	34
5	Controllable Formation of Ordered Vacancy Compound for High Efficiency Solution Processed Cu(In,Ga)Se ₂ Solar Cells. Advanced Functional Materials, 2021, 31, 2007928.	14.9	52
6	Local Cu Component Engineering to Achieve Continuous Carrier Transport for Enhanced Kesterite Solar Cells. ACS Applied Materials & Interfaces, 2021, 13, 795-805.	8.0	16
7	Synergistic effect of Mn on bandgap fluctuations and surface electrical characteristics in Ag-based Cu ₂ ZnSn(S,Se) ₄ solar cells. Journal of Materials Chemistry A, 2021, 9, 2292-2300.	10.3	25
8	Regulation of selenium composition by supercritical carbon dioxide for CZTSSe solar cells efficiency improvement. Solar Energy Materials and Solar Cells, 2021, 231, 111308.	6.2	13
9	Adjusting the SnZn defects in Cu2ZnSn(S,Se)4 absorber layer via Ge4+ implanting for efficient kesterite solar cells. Journal of Energy Chemistry, 2021, 61, 1-7.	12.9	38
10	Ag, Ge dual-gradient substitution for low-energy loss and high-efficiency kesterite solar cells. Journal of Materials Chemistry A, 2020, 8, 22292-22301.	10.3	59
11	Boosting the efficiency of solution-based CZTSSe solar cells by supercritical carbon dioxide treatment. Green Chemistry, 2020, 22, 3597-3607.	9.0	15
12	Enhancing Grain Growth for Efficient Solution-Processed (Cu,Ag) ₂ ZnSn(S,Se) ₄ Solar Cells Based on Acetate Precursor. ACS Applied Materials & Interfaces, 2020, 12, 14213-14223.	8.0	31
13	Lithium-assisted synergistic engineering of charge transport both in GBs and GI for Ag-substituted Cu2ZnSn(S,Se)4 solar cells. Journal of Energy Chemistry, 2020, 50, 9-15.	12.9	46
14	High Efficiency CIGS Solar Cells by Bulk Defect Passivation through Ag Substituting Strategy. ACS Applied Materials & Interfaces, 2020, 12, 12717-12726.	8.0	79
15	Engineering the Band Offsets at the Back Contact Interface for Efficient Kesterite CZTSSe Solar Cells. ACS Applied Energy Materials, 2020, 3, 10976-10982.	5.1	18
16	Nanoscale electrical property enhancement through antimony incorporation to pave the way for the development of low-temperature processed Cu ₂ ZnSn(S,Se) ₄ solar cells. Journal of Materials Chemistry A, 2019, 7, 3135-3142.	10.3	35
17	Se-Assisted Performance Enhancement of Cu ₂ ZnSn(S,Se) ₄ Quantum-Dot Sensitized Solar Cells via a Simple Yet Versatile Synthesis. Inorganic Chemistry, 2019, 58, 13285-13292.	4.0	13
18	Chemical Dynamics of Back Contact with MoO ₃ Interfacial Layer in Kesterite Solar Cells: Microstructure Evolution and Photovoltaic Performance, Solar Rrl, 2019, 3, 1900131	5.8	25

Dong-Xing Kou

#	Article	IF	CITATIONS
19	CulnGaSe2 thin-film solar cells with 11.5% efficiency: An effective and low-cost way of Na-incorporation for grain-growth. Solar Energy, 2019, 185, 34-40.	6.1	11
20	Plasmon-mediated nonradiative energy transfer from a conjugated polymer to a plane of graphene-nanodot-supported silver nanoparticles: an insight into characteristic distance. Nanoscale, 2019, 11, 6737-6746.	5.6	9
21	Cu ₂ ZnSnS ₄ Quantum Dots as Hole Transport Material for Enhanced Charge Extraction and Stability in Allâ€Inorganic CsPbBr ₃ Perovskite Solar Cells. Solar Rrl, 2019, 3, 1800354.	5.8	34
22	Precisely tuning Ge substitution for efficient solution-processed Cu 2 ZnSn(S, Se) 4 solar cells. Chinese Physics B, 2018, 27, 018809.	1.4	0
23	Cu2ZnSnS4 decorated CdS nanorods for enhanced visible-light-driven photocatalytic hydrogen production. International Journal of Hydrogen Energy, 2018, 43, 20408-20416.	7.1	51
24	Precise-tuning the In content to achieve high fill factor in hybrid buffer structured Cu 2 ZnSn(S, Se) 4 solar cells. Solar Energy, 2017, 148, 157-163.	6.1	18
25	Elemental Precursor Solution Processed (Cu _{1–<i>x</i>} Ag _{<i>x</i>}) ₂ ZnSn(S,Se) ₄ Photovoltaic Devices with over 10% Efficiency. ACS Applied Materials & Interfaces, 2017, 9, 21243-21250.	8.0	114
26	Engineering of interface band bending and defects elimination via a Ag-graded active layer for efficient (Cu,Ag) ₂ ZnSn(S,Se) ₄ solar cells. Energy and Environmental Science, 2017, 10, 2401-2410.	30.8	221
27	Cu ₂ ZnSnS ₄ –CdS heterostructured nanocrystals for enhanced photocatalytic hydrogen production. Catalysis Science and Technology, 2017, 7, 3980-3984.	4.1	15
28	Performances Enhancement in Perovskite Solar Cells by Incorporating Plasmonic Au NRs@SiO ₂ at Absorber/HTL Interface. Solar Rrl, 2017, 1, 1700151.	5.8	21
29	Quaternary Cu 2 ZnSnS 4 quantum dot-sensitized solar cells: Synthesis, passivation and ligand exchange. Journal of Power Sources, 2016, 318, 35-40.	7.8	35
30	Eliminating fine-grained layers in Cu(In,Ga)(S,Se) ₂ thin films for solution-processed high efficiency solar cells. Journal of Materials Chemistry A, 2016, 4, 13476-13481.	10.3	31
31	Improving the Performance of Solution-Processed Cu ₂ ZnSn(S,Se) ₄ Photovoltaic Materials by Cd ²⁺ Substitution. Chemistry of Materials, 2016, 28, 5821-5828.	6.7	124
32	High efficiency CZTSSe thin film solar cells from pure element solution: A study of additional Sn complement. Solar Energy Materials and Solar Cells, 2016, 155, 209-215.	6.2	30
33	Effect of ligand exchange of Cu2ZnSnS4 nanocrystals on the charge transport and photovoltaic performance of nanostructured depleted bulk heterojunction solar cell. Journal of Nanoparticle Research, 2015, 17, 1.	1.9	4
34	Solution-Processed Cu2ZnSn(S,Se)4 Thin-Film Solar Cells Using Elemental Cu, Zn, Sn, S, and Se Powders as Source. Nanoscale Research Letters, 2015, 10, 1045.	5.7	16
35	Application of quaternary Cu ₂ ZnSnS ₄ quantum dot-sensitized solar cells based on the hydrolysis approach. Green Chemistry, 2015, 17, 4377-4382.	9.0	40
36	Solution-deposited pure selenide CIGSe solar cells from elemental Cu, In, Ga, and Se. Journal of Materials Chemistry A, 2015, 3, 19263-19267.	10.3	51

Dong-Xing Kou

#	Article	IF	CITATIONS
37	High temperature recrystallization of kersterite Cu2ZnSnS4 towards enhanced photocatalytic H2 evolution. International Journal of Hydrogen Energy, 2015, 40, 13456-13462.	7.1	19
38	Phase-dependent photocatalytic H ₂ evolution of copper zinc tin sulfide under visible light. Chemical Communications, 2014, 50, 12726-12729.	4.1	28
39	Cu2ZnSnSe4 nanocrystals capped with S2â^' by ligand exchange: utilizing energy level alignment for efficiently reducing carrier rec ombination. Nanoscale Research Letters, 2014, 9, 262.	5.7	17