Jinben Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5439927/publications.pdf

Version: 2024-02-01

414414 361413 1,174 66 20 32 citations h-index g-index papers 67 67 67 1645 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Versatile snail-inspired superamphiphobic coatings with repeatable adhesion and recyclability. Chemical Engineering Science, 2021, 230, 116182.	3.8	16
2	Effects of molecular polarity on the adsorption and desorption behavior of asphaltene model compounds on silica surfaces. Fuel, 2021, 284, 118990.	6.4	25
3	Imidazole-Based Ionic Liquids with BF4 as the Counterion Perform Outstanding Abilities in Both Inhibiting Clay Swelling and Lowing Water Cluster Size. International Journal of Molecular Sciences, 2021, 22, 6465.	4.1	1
4	A Facile Strategy to Prepare Small Water Clusters via Interacting with Functional Molecules. International Journal of Molecular Sciences, 2021, 22, 8250.	4.1	2
5	Rapid demulsification of pickering emulsions triggered by controllable magnetic field. Scientific Reports, 2020, 10, 16565.	3.3	7
6	Dual-Responsive Nanotubes Assembled by Amphiphilic Dendrimers: Controlled Release and Crosslinking. Materials, 2020, 13 , 3479 .	2.9	0
7	Molecular interactions at the interface between asphaltene and different substrates in the presence of electrolyte. Journal of Dispersion Science and Technology, 2020, , 1-6.	2.4	1
8	Controlling DOPA adsorption via interacting with polyelectrolytes: layer structure and corrosion resistance. Soft Matter, 2020, 16, 4912-4918.	2.7	4
9	Endowing recyclability to anti-adhesion materials <i>via</i> designing physically crosslinked polyurethane. Journal of Materials Chemistry A, 2019, 7, 22903-22911.	10.3	10
10	Molecular interaction between asphaltene and quartz with different surface wettability: A combined study of experimental measurement and theoretical calculation. Fuel, 2019, 258, 115937.	6.4	18
11	PDEA-Based Amphiphilic Polymer Enables pH-Responsive Emulsions for a Rapid Demulsification. , 2019, , .		O
12	Coexistence of Antiadhesion Performance, Intrinsic Stretchability, and Transparency. ACS Applied Materials & Samp; Interfaces, 2019, 11, 16914-16921.	8.0	8
13	Ultra-high flux and efficient oil-water separation via polymer-based electrophoretic deposition. Chemical Engineering Journal, 2019, 371, 575-582.	12.7	22
14	Ultrahighly Charged Amphiphilic Polymer Brushes with Super-Antibacterial and Self-Cleaning Capabilities. Langmuir, 2019, 35, 3031-3037.	3.5	19
15	Direct Experimental Evidence of Biomimetic Surfaces with Chemical Modifications Interfering with Adhesive Protein Adsorption. Molecules, 2019, 24, 27.	3.8	13
16	Construction of DOPA-SAM multilayers with corrosion resistance via controlled molecular self-assembly. Journal of Industrial and Engineering Chemistry, 2019, 69, 179-186.	5.8	5
17	Characterizing the environmental impact of metals in construction and demolition waste. Environmental Science and Pollution Research, 2018, 25, 13823-13832.	5.3	33
18	A multifunctional supramolecular hydrogel: preparation, properties and molecular assembly. Soft Matter, 2018, 14, 566-573.	2.7	26

#	Article	IF	CITATIONS
19	Salinity-dependent adhesion of model molecules of crude oil at quartz surface with different wettability. Fuel, 2018, 223, 401-407.	6.4	23
20	A temperature-responsive supramolecular hydrogel: preparation, gel–gel transition and molecular aggregation. Soft Matter, 2018, 14, 3090-3095.	2.7	17
21	A pH and salt dually responsive emulsion in the presence of amphiphilic macromolecules. Soft Matter, 2018, 14, 405-410.	2.7	14
22	Self-assembled pH-responsive supramolecular hydrogel for hydrophobic drug delivery. RSC Advances, 2018, 8, 31581-31587.	3.6	11
23	Surface-Engineered Nanocontainers Based on Molecular Self-Assembly and Their Release of Methenamine. Polymers, 2018, 10, 163.	4.5	1
24	Magnetic-responsive switchable emulsions based on Fe ₃ O ₄ @SiO ₂ â€"NH ₂ nanoparticles. Chemical Communications, 2018, 54, 10679-10682.	4.1	31
25	PAMAM-Based Dendrimers with Different Alkyl Chains Self-Assemble on Silica Surfaces: Controllable Layer Structure and Molecular Aggregation. Journal of Physical Chemistry B, 2018, 122, 6648-6655.	2.6	5
26	Facile fabrication of Sudan red particle microcapsules by a polymerizable gemini surfactant and molecular assembly mechanisms. Soft Matter, 2017, 13, 1881-1887.	2.7	4
27	Smooth Water-Based Antismudge Coatings for Various Substrates. ACS Sustainable Chemistry and Engineering, 2017, 5, 2605-2613.	6.7	50
28	Adsorption and Orientation of 3,4-Dihydroxy- <scp>l</scp> -phenylalanine onto Tunable Monolayer Films. Journal of Physical Chemistry C, 2017, 121, 11544-11551.	3.1	14
29	Quantifying the potential export flows of used electronic products in Macau: a case study of PCs. Environmental Science and Pollution Research, 2017, 24, 28197-28204.	5. 3	3
30	Molecular interactions between DOPA and surfaces with different functional groups: a chemical force microscopy study. RSC Advances, 2017, 7, 32518-32527.	3.6	28
31	Characterization of brominated flame retardants from e-waste components in China. Waste Management, 2017, 68, 498-507.	7.4	45
32	Effect of specific functional groups on oil adhesion from mica substrate: Implications for low salinity effect. Journal of Industrial and Engineering Chemistry, 2017, 56, 342-349.	5.8	46
33	Adsorption mechanism of mussel-derived adhesive proteins onto various self-assembled monolayers. RSC Advances, 2017, 7, 39530-39538.	3.6	10
34	General Water-Based Strategy for the Preparation of Superhydrophobic Coatings on Smooth Substrates. Industrial & Substrat	3.7	12
35	Controllable Self-Assembly of Amphiphilic Dendrimers on a Silica Surface: The Effect of Molecular Topological Structure and Salinity. Journal of Physical Chemistry B, 2016, 120, 10990-10999.	2.6	5
36	Self-Assembly Behavior of Ultrahighly Charged Amphiphilic Polyelectrolyte on Solid Surfaces. Langmuir, 2016, 32, 11485-11491.	3.5	15

#	Article	IF	Citations
37	"Peeling Off―Mechanism of Asphaltenes from Solid/Liquid Interface in the Presence of a Highly Charged Amphiphilic Macromolecule. Energy & Samp; Fuels, 2016, 30, 9250-9259.	5.1	14
38	Effect of Ionic Strength on the Interfacial Forces between Oil/Brine/Rock Interfaces: A Chemical Force Microscopy Study. Energy & Study. Fuels, 2016, 30, 273-280.	5.1	34
39	The facile preparation of self-cleaning fabrics. Composites Science and Technology, 2016, 122, 1-9.	7.8	39
40	Transformation of selfâ€assembled structures from spherical aggregates in solution to a network structure on a twoâ€dimensional surface. Journal of Applied Polymer Science, 2015, 132, .	2.6	0
41	Antibacterial Activity of Geminized Amphiphilic Cationic Homopolymers. Langmuir, 2015, 31, 13469-13477.	3.5	49
42	Self-Aggregation of Amphiphilic Dendrimer in Aqueous Solution: The Effect of Headgroup and Hydrocarbon Chain Length. Langmuir, 2015, 31, 7919-7925.	3.5	12
43	Desorption Mechanism of Asphaltenes in the Presence of Electrolyte and the Extended Derjaguin–Landau–Verwey–Overbeek Theory. Energy & Fuels, 2015, 29, 4272-4280.	5.1	41
44	Interactions between Colloidal Particles in the Presence of an Ultrahighly Charged Amphiphilic Polyelectrolyte. Langmuir, 2014, 30, 14512-14521.	3.5	23
45	Self-assembly phenomena of the brush-like amphiphilic organopolysiloxanes in aqueous solution. Polymers for Advanced Technologies, 2014, 25, 1175-1180.	3.2	3
46	Environmentally responsive polymeric materials: effect of the topological structure on self-assembly. Soft Matter, 2014, 10, 6749.	2.7	9
47	Aggregation Behaviors of Novel Amphiphilic Dendrimers at Solid-Liquid Interface. Journal of Dispersion Science and Technology, 2014, 35, 456-462.	2.4	3
48	Self-assembly of brush-like amphiphilic statistical polymers: the effect of salt stimulus on the molecular associative mode. Supramolecular Chemistry, 2013, 25, 151-157.	1.2	5
49	Dilational Properties of Novel Amphiphilic Dendrimers at Water–Air and Water–Heptane Interfaces. Journal of Physical Chemistry B, 2012, 116, 12760-12768.	2.6	17
50	Synthesis and Emulsification Properties of an Amphiphilic Polymer for Enhanced Oil Recovery. Journal of Dispersion Science and Technology, 2010, 31, 931-935.	2.4	28
51	pH and salt effects on the aggregation behaviour of star polymer with G1 polyamidoamine core and terminal amphiphilic blocks. Supramolecular Chemistry, 2010, 22, 477-482.	1.2	5
52	Aggregate Conformation and Rheological Properties of Didodecyldimethylammonium Bromide in Aqueous Solution. Journal of Dispersion Science and Technology, 2010, 31, 650-653.	2.4	5
53	Aggregation Behavior of Amphiphilic Dendritic Block Copolymer with Butanediyl-α,ω-bis(tetradecyldimethylammonium bromide) in Aqueous Solution. Journal of Chemical & Engineering Data, 2010, 55, 4221-4226.	1.9	4
54	Synthesis and characterization of a series of modified polyacrylamide. Colloid and Polymer Science, 2009, 287, 237-241.	2.1	63

#	Article	lF	CITATIONS
55	Aggregation behaviour of a novel series of polyamidoamine-based dendrimers in aqueous solution. Supramolecular Chemistry, 2009, 21, 754-758.	1.2	8
56	Salt Effect, Surface, and Aggregation Properties of Binary Surfactant Mixtures of a Nonionic Gemini Surfactant (HBA(EO) ₈₀) with Anionic Surfactants. Journal of Dispersion Science and Technology, 2008, 29, 1189-1194.	2.4	0
57	Rheologic Properties and Molecular Configuration of Polymers in Saltâ€Alkaliâ€Surfactant Mixed Solutions. Journal of Dispersion Science and Technology, 2008, 29, 101-105.	2.4	11
58	Micelle Formation and Aggregate Morphology Transition from Vesicle to Rod Micelle for Allyl Alkyldimethylammonium Bromide Cationic Surfactant. Journal of Dispersion Science and Technology, 2008, 29, 83-88.	2.4	4
59	Relationship Between the Polymer Structures and Destabilization of Polymerâ€Containing Waterâ€inâ€Oil Emulsions. Journal of Dispersion Science and Technology, 2007, 28, 1178-1182.	2.4	4
60	Synthesis of Right- and Left-Handed Silver Nanohelices with a Racemic Gelator. Langmuir, 2003, 19, 9440-9445.	3. 5	54
61	Thermodynamics of Molecular Self-Assembly of Cationic Gemini and Related Double Chain Surfactants in Aqueous Solution. Journal of Physical Chemistry B, 2001, 105, 3105-3108.	2.6	128
62	Microcalorimetric Studies of the Interaction between DDAB and SDS and the Phase Behavior of the Mixture. Langmuir, 2001, 17, 3522-3525.	3.5	37
63	A titration microcalorimeter and the vesicle of mixed surfactants. Science in China Series B: Chemistry, 2000, 43, 617-624.	0.8	3
64	The Role of Chain Length and Structure in Surfactant Adsorption at Na-Kaolinite. Adsorption Science and Technology, 1998, 16, 565-575.	3.2	5
65	The Hydrophobic Effect in the Adsorption Process of Alkyltrimethylammonium Bromides on to Activated Carbon. Adsorption Science and Technology, 1998, 16, 557-564.	3.2	3
66	In Situ Investigation on the Effect of Salinity and pH on the Asphaltene Desorption under Flowing Conditions. Energy & Description (Section 2) and pH on the Asphaltene Desorption under Flowing Conditions.	5.1	1