
Jinben Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5439927/publications.pdf Version: 2024-02-01

LINBEN WANC

#	Article	IF	CITATIONS
1	Thermodynamics of Molecular Self-Assembly of Cationic Gemini and Related Double Chain Surfactants in Aqueous Solution. Journal of Physical Chemistry B, 2001, 105, 3105-3108.	2.6	128
2	Synthesis and characterization of a series of modified polyacrylamide. Colloid and Polymer Science, 2009, 287, 237-241.	2.1	63
3	Synthesis of Right- and Left-Handed Silver Nanohelices with a Racemic Gelator. Langmuir, 2003, 19, 9440-9445.	3.5	54
4	Smooth Water-Based Antismudge Coatings for Various Substrates. ACS Sustainable Chemistry and Engineering, 2017, 5, 2605-2613.	6.7	50
5	Antibacterial Activity of Geminized Amphiphilic Cationic Homopolymers. Langmuir, 2015, 31, 13469-13477.	3.5	49
6	Effect of specific functional groups on oil adhesion from mica substrate: Implications for low salinity effect. Journal of Industrial and Engineering Chemistry, 2017, 56, 342-349.	5.8	46
7	Characterization of brominated flame retardants from e-waste components in China. Waste Management, 2017, 68, 498-507.	7.4	45
8	Desorption Mechanism of Asphaltenes in the Presence of Electrolyte and the Extended Derjaguin–Landau–Verwey–Overbeek Theory. Energy & Fuels, 2015, 29, 4272-4280.	5.1	41
9	The facile preparation of self-cleaning fabrics. Composites Science and Technology, 2016, 122, 1-9.	7.8	39
10	Microcalorimetric Studies of the Interaction between DDAB and SDS and the Phase Behavior of the Mixture. Langmuir, 2001, 17, 3522-3525.	3.5	37
11	Effect of Ionic Strength on the Interfacial Forces between Oil/Brine/Rock Interfaces: A Chemical Force Microscopy Study. Energy & Fuels, 2016, 30, 273-280.	5.1	34
12	Characterizing the environmental impact of metals in construction and demolition waste. Environmental Science and Pollution Research, 2018, 25, 13823-13832.	5.3	33
13	Magnetic-responsive switchable emulsions based on Fe ₃ O ₄ @SiO ₂ –NH ₂ nanoparticles. Chemical Communications, 2018, 54, 10679-10682.	4.1	31
14	Synthesis and Emulsification Properties of an Amphiphilic Polymer for Enhanced Oil Recovery. Journal of Dispersion Science and Technology, 2010, 31, 931-935.	2.4	28
15	Molecular interactions between DOPA and surfaces with different functional groups: a chemical force microscopy study. RSC Advances, 2017, 7, 32518-32527.	3.6	28
16	A multifunctional supramolecular hydrogel: preparation, properties and molecular assembly. Soft Matter, 2018, 14, 566-573.	2.7	26
17	Effects of molecular polarity on the adsorption and desorption behavior of asphaltene model compounds on silica surfaces. Fuel, 2021, 284, 118990.	6.4	25
18	Interactions between Colloidal Particles in the Presence of an Ultrahighly Charged Amphiphilic Polyelectrolyte. Langmuir, 2014, 30, 14512-14521.	3.5	23

JINBEN WANG

#	Article	IF	CITATIONS
19	Salinity-dependent adhesion of model molecules of crude oil at quartz surface with different wettability. Fuel, 2018, 223, 401-407.	6.4	23
20	Ultra-high flux and efficient oil-water separation via polymer-based electrophoretic deposition. Chemical Engineering Journal, 2019, 371, 575-582.	12.7	22
21	Ultrahighly Charged Amphiphilic Polymer Brushes with Super-Antibacterial and Self-Cleaning Capabilities. Langmuir, 2019, 35, 3031-3037.	3.5	19
22	Molecular interaction between asphaltene and quartz with different surface wettability: A combined study of experimental measurement and theoretical calculation. Fuel, 2019, 258, 115937.	6.4	18
23	Dilational Properties of Novel Amphiphilic Dendrimers at Water–Air and Water–Heptane Interfaces. Journal of Physical Chemistry B, 2012, 116, 12760-12768.	2.6	17
24	A temperature-responsive supramolecular hydrogel: preparation, gel–gel transition and molecular aggregation. Soft Matter, 2018, 14, 3090-3095.	2.7	17
25	Versatile snail-inspired superamphiphobic coatings with repeatable adhesion and recyclability. Chemical Engineering Science, 2021, 230, 116182.	3.8	16
26	Self-Assembly Behavior of Ultrahighly Charged Amphiphilic Polyelectrolyte on Solid Surfaces. Langmuir, 2016, 32, 11485-11491.	3.5	15
27	"Peeling Off―Mechanism of Asphaltenes from Solid/Liquid Interface in the Presence of a Highly Charged Amphiphilic Macromolecule. Energy & Fuels, 2016, 30, 9250-9259.	5.1	14
28	Adsorption and Orientation of 3,4-Dihydroxy- <scp>l</scp> -phenylalanine onto Tunable Monolayer Films. Journal of Physical Chemistry C, 2017, 121, 11544-11551.	3.1	14
29	A pH and salt dually responsive emulsion in the presence of amphiphilic macromolecules. Soft Matter, 2018, 14, 405-410.	2.7	14
30	Direct Experimental Evidence of Biomimetic Surfaces with Chemical Modifications Interfering with Adhesive Protein Adsorption. Molecules, 2019, 24, 27.	3.8	13
31	Self-Aggregation of Amphiphilic Dendrimer in Aqueous Solution: The Effect of Headgroup and Hydrocarbon Chain Length. Langmuir, 2015, 31, 7919-7925.	3.5	12
32	General Water-Based Strategy for the Preparation of Superhydrophobic Coatings on Smooth Substrates. Industrial & Engineering Chemistry Research, 2017, 56, 13783-13790.	3.7	12
33	Rheologic Properties and Molecular Configuration of Polymers in Saltâ€Alkaliâ€5urfactant Mixed Solutions. Journal of Dispersion Science and Technology, 2008, 29, 101-105.	2.4	11
34	Self-assembled pH-responsive supramolecular hydrogel for hydrophobic drug delivery. RSC Advances, 2018, 8, 31581-31587.	3.6	11
35	Adsorption mechanism of mussel-derived adhesive proteins onto various self-assembled monolayers. RSC Advances, 2017, 7, 39530-39538.	3.6	10
36	Endowing recyclability to anti-adhesion materials <i>via</i> designing physically crosslinked polyurethane. Journal of Materials Chemistry A, 2019, 7, 22903-22911.	10.3	10

JINBEN WANG

#	Article	IF	CITATIONS
37	Environmentally responsive polymeric materials: effect of the topological structure on self-assembly. Soft Matter, 2014, 10, 6749.	2.7	9
38	Aggregation behaviour of a novel series of polyamidoamine-based dendrimers in aqueous solution. Supramolecular Chemistry, 2009, 21, 754-758.	1.2	8
39	Coexistence of Antiadhesion Performance, Intrinsic Stretchability, and Transparency. ACS Applied Materials & Interfaces, 2019, 11, 16914-16921.	8.0	8
40	Rapid demulsification of pickering emulsions triggered by controllable magnetic field. Scientific Reports, 2020, 10, 16565.	3.3	7
41	The Role of Chain Length and Structure in Surfactant Adsorption at Na-Kaolinite. Adsorption Science and Technology, 1998, 16, 565-575.	3.2	5
42	pH and salt effects on the aggregation behaviour of star polymer with G1 polyamidoamine core and terminal amphiphilic blocks. Supramolecular Chemistry, 2010, 22, 477-482.	1.2	5
43	Aggregate Conformation and Rheological Properties of Didodecyldimethylammonium Bromide in Aqueous Solution. Journal of Dispersion Science and Technology, 2010, 31, 650-653.	2.4	5
44	Self-assembly of brush-like amphiphilic statistical polymers: the effect of salt stimulus on the molecular associative mode. Supramolecular Chemistry, 2013, 25, 151-157.	1.2	5
45	Controllable Self-Assembly of Amphiphilic Dendrimers on a Silica Surface: The Effect of Molecular Topological Structure and Salinity. Journal of Physical Chemistry B, 2016, 120, 10990-10999.	2.6	5
46	PAMAM-Based Dendrimers with Different Alkyl Chains Self-Assemble on Silica Surfaces: Controllable Layer Structure and Molecular Aggregation. Journal of Physical Chemistry B, 2018, 122, 6648-6655.	2.6	5
47	Construction of DOPA-SAM multilayers with corrosion resistance via controlled molecular self-assembly. Journal of Industrial and Engineering Chemistry, 2019, 69, 179-186.	5.8	5
48	Relationship Between the Polymer Structures and Destabilization of Polymerâ€Containing Waterâ€inâ€Oil Emulsions. Journal of Dispersion Science and Technology, 2007, 28, 1178-1182.	2.4	4
49	Micelle Formation and Aggregate Morphology Transition from Vesicle to Rod Micelle for Allyl Alkyldimethylammonium Bromide Cationic Surfactant. Journal of Dispersion Science and Technology, 2008, 29, 83-88.	2.4	4
50	Aggregation Behavior of Amphiphilic Dendritic Block Copolymer with Butanediyl-α,ï‰-bis(tetradecyldimethylammonium bromide) in Aqueous Solution. Journal of Chemical & Engineering Data, 2010, 55, 4221-4226.	1.9	4
51	Facile fabrication of Sudan red particle microcapsules by a polymerizable gemini surfactant and molecular assembly mechanisms. Soft Matter, 2017, 13, 1881-1887.	2.7	4
52	Controlling DOPA adsorption via interacting with polyelectrolytes: layer structure and corrosion resistance. Soft Matter, 2020, 16, 4912-4918.	2.7	4
53	The Hydrophobic Effect in the Adsorption Process of Alkyltrimethylammonium Bromides on to Activated Carbon. Adsorption Science and Technology, 1998, 16, 557-564.	3.2	3
54	A titration microcalorimeter and the vesicle of mixed surfactants. Science in China Series B: Chemistry, 2000, 43, 617-624.	0.8	3

JINBEN WANG

#	Article	IF	CITATIONS
55	Self-assembly phenomena of the brush-like amphiphilic organopolysiloxanes in aqueous solution. Polymers for Advanced Technologies, 2014, 25, 1175-1180.	3.2	3
56	Aggregation Behaviors of Novel Amphiphilic Dendrimers at Solid-Liquid Interface. Journal of Dispersion Science and Technology, 2014, 35, 456-462.	2.4	3
57	Quantifying the potential export flows of used electronic products in Macau: a case study of PCs. Environmental Science and Pollution Research, 2017, 24, 28197-28204.	5.3	3
58	A Facile Strategy to Prepare Small Water Clusters via Interacting with Functional Molecules. International Journal of Molecular Sciences, 2021, 22, 8250.	4.1	2
59	Surface-Engineered Nanocontainers Based on Molecular Self-Assembly and Their Release of Methenamine. Polymers, 2018, 10, 163.	4.5	1
60	Molecular interactions at the interface between asphaltene and different substrates in the presence of electrolyte. Journal of Dispersion Science and Technology, 2020, , 1-6.	2.4	1
61	Imidazole-Based Ionic Liquids with BF4 as the Counterion Perform Outstanding Abilities in Both Inhibiting Clay Swelling and Lowing Water Cluster Size. International Journal of Molecular Sciences, 2021, 22, 6465.	4.1	1
62	In Situ Investigation on the Effect of Salinity and pH on the Asphaltene Desorption under Flowing Conditions. Energy & Fuels, 0, , .	5.1	1
63	Salt Effect, Surface, and Aggregation Properties of Binary Surfactant Mixtures of a Nonionic Gemini Surfactant (HBA(EO) ₈₀) with Anionic Surfactants. Journal of Dispersion Science and Technology, 2008, 29, 1189-1194.	2.4	Ο
64	Transformation of selfâ€assembled structures from spherical aggregates in solution to a network structure on a twoâ€dimensional surface. Journal of Applied Polymer Science, 2015, 132, .	2.6	0
65	PDEA-Based Amphiphilic Polymer Enables pH-Responsive Emulsions for a Rapid Demulsification. , 2019, , .		0
66	Dual-Responsive Nanotubes Assembled by Amphiphilic Dendrimers: Controlled Release and Crosslinking. Materials, 2020, 13, 3479.	2.9	0