
## Ruichan Lv

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5439773/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                         | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | A Yolk-like Multifunctional Platform for Multimodal Imaging and Synergistic Therapy Triggered by a<br>Single Near-Infrared Light. ACS Nano, 2015, 9, 1630-1647.                                                                 | 7.3 | 319       |
| 2  | Assembly of Au Plasmonic Photothermal Agent and Iron Oxide Nanoparticles on Ultrathin Black<br>Phosphorus for Targeted Photothermal and Photodynamic Cancer Therapy. Advanced Functional<br>Materials, 2017, 27, 1700371.       | 7.8 | 254       |
| 3  | Integration of Upconversion Nanoparticles and Ultrathin Black Phosphorus for Efficient<br>Photodynamic Theranostics under 808 nm Near-Infrared Light Irradiation. Chemistry of Materials,<br>2016, 28, 4724-4734.               | 3.2 | 193       |
| 4  | An imaging-guided platform for synergistic photodynamic/photothermal/chemo-therapy with pH/temperature-responsive drug release. Biomaterials, 2015, 63, 115-127.                                                                | 5.7 | 191       |
| 5  | A New Single 808 nm NIR Lightâ€Induced Imagingâ€Guided Multifunctional Cancer Therapy Platform.<br>Advanced Functional Materials, 2015, 25, 3966-3976.                                                                          | 7.8 | 178       |
| 6  | g-C <sub>3</sub> N <sub>4</sub> Coated Upconversion Nanoparticles for 808 nm Near-Infrared Light<br>Triggered Phototherapy and Multiple Imaging. Chemistry of Materials, 2016, 28, 7935-7946.                                   | 3.2 | 163       |
| 7  | <i>In Situ</i> Growth Strategy to Integrate Up-Conversion Nanoparticles with Ultrasmall CuS for Photothermal Theranostics. ACS Nano, 2017, 11, 1064-1072.                                                                       | 7.3 | 132       |
| 8  | A Single 808 nm Near-Infrared Light-Mediated Multiple Imaging and Photodynamic Therapy Based on<br>Titania Coupled Upconversion Nanoparticles. Chemistry of Materials, 2015, 27, 7957-7968.                                     | 3.2 | 129       |
| 9  | Multifunctional Anticancer Platform for Multimodal Imaging and Visible Light Driven<br>Photodynamic/Photothermal Therapy. Chemistry of Materials, 2015, 27, 1751-1763.                                                          | 3.2 | 109       |
| 10 | Hyperthermia and Controllable Free Radical Coenhanced Synergistic Therapy in Hypoxia Enabled by<br>Near-Infrared-II Light Irradiation. ACS Nano, 2019, 13, 13144-13160.                                                         | 7.3 | 109       |
| 11 | Controllable Generation of Free Radicals from Multifunctional Heat-Responsive Nanoplatform for Targeted Cancer Therapy. Chemistry of Materials, 2018, 30, 526-539.                                                              | 3.2 | 103       |
| 12 | Hollow Structured Y <sub>2</sub> O <sub>3</sub> :Yb/Er–Cu <sub><i>x</i></sub> S Nanospheres with<br>Controllable Size for Simultaneous Chemo/Photothermal Therapy and Bioimaging. Chemistry of<br>Materials, 2015, 27, 483-496. | 3.2 | 102       |
| 13 | Au <sub>25</sub> cluster functionalized metal–organic nanostructures for magnetically targeted photodynamic/photothermal therapy triggered by single wavelength 808 nm near-infrared light.<br>Nanoscale, 2015, 7, 19568-19578. | 2.8 | 99        |
| 14 | Yolk-Structured Upconversion Nanoparticles with Biodegradable Silica Shell for FRET Sensing of Drug Release and Imaging-Guided Chemotherapy. Chemistry of Materials, 2017, 29, 7615-7628.                                       | 3.2 | 92        |
| 15 | A core/shell/satellite anticancer platform for 808 NIR light-driven multimodal imaging and combined chemo-/photothermal therapy. Nanoscale, 2015, 7, 13747-13758.                                                               | 2.8 | 78        |
| 16 | Charge convertibility and near infrared photon co-enhanced cisplatin chemotherapy based on upconversion nanoplatform. Biomaterials, 2017, 130, 42-55.                                                                           | 5.7 | 77        |
| 17 | Bismuth Nanoparticles with "Light―Property Served as a Multifunctional Probe for X-ray Computed<br>Tomography and Fluorescence Imaging. Chemistry of Materials, 2018, 30, 3301-3307.                                            | 3.2 | 68        |
| 18 | A Versatile Near Infrared Light Triggered Dual-Photosensitizer for Synchronous Bioimaging and Photodynamic Therapy. ACS Applied Materials & Interfaces, 2017, 9, 12993-13008.                                                   | 4.0 | 66        |

Ruichan Lv

| #  | Article                                                                                                                                                                                                                      | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Stable ICG-loaded upconversion nanoparticles: silica core/shell theranostic nanoplatform for<br>dual-modal upconversion and photoacoustic imaging together with photothermal therapy. Scientific<br>Reports, 2017, 7, 15753. | 1.6 | 63        |
| 20 | Highly Uniform Hollow GdF <sub>3</sub> Spheres: Controllable Synthesis, Tuned Luminescence, and Drug-Release Properties. ACS Applied Materials & Interfaces, 2013, 5, 10806-10818.                                           | 4.0 | 55        |
| 21 | Y <sub>2</sub> O <sub>3</sub> :Yb,Er@mSiO <sub>2</sub> –Cu <sub>x</sub> S double-shelled hollow<br>spheres for enhanced chemo-/photothermal anti-cancer therapy and dual-modal imaging. Nanoscale,<br>2015, 7, 12180-12191.  | 2.8 | 55        |
| 22 | A Novel double-shelled C@NiO hollow microsphere: Synthesis and application for electrochemical capacitor. Electrochimica Acta, 2014, 148, 211-219.                                                                           | 2.6 | 54        |
| 23 | Black Phosphorus Nanosheet with High Thermal Conversion Efficiency for<br>Photodynamic/Photothermal/Immunotherapy. ACS Biomaterials Science and Engineering, 2020, 6,<br>4940-4948.                                          | 2.6 | 52        |
| 24 | Enhanced Upconversion Luminescence-Guided Synergistic Antitumor Therapy Based on Photodynamic<br>Therapy and Immune Checkpoint Blockade. Chemistry of Materials, 2020, 32, 4627-4640.                                        | 3.2 | 50        |
| 25 | Imaging-Guided and Light-Triggered Chemo-/Photodynamic/Photothermal Therapy Based on Gd (III)<br>Chelated Mesoporous Silica Hybrid Spheres. ACS Biomaterials Science and Engineering, 2016, 2,<br>2058-2071.                 | 2.6 | 46        |
| 26 | Lutecium Fluoride Hollow Mesoporous Spheres with Enhanced Up-Conversion Luminescent<br>Bioimaging and Light-Triggered Drug Release by Gold Nanocrystals. ACS Applied Materials &<br>Interfaces, 2014, 6, 15550-15563.        | 4.0 | 42        |
| 27 | Multifunctional SiO <sub>2</sub> @Gd <sub>2</sub> O <sub>3</sub> :Yb/Tm Hollow Capsules:<br>Controllable Synthesis and Drug Release Properties. Inorganic Chemistry, 2014, 53, 10917-10927.                                  | 1.9 | 41        |
| 28 | Doxorubicin-conjugated CuS nanoparticles for efficient synergistic therapy triggered by near-infrared light. Dalton Transactions, 2016, 45, 5101-5110.                                                                       | 1.6 | 40        |
| 29 | Nanochemistry advancing photon conversion in rare-earth nanostructures for theranostics.<br>Coordination Chemistry Reviews, 2022, 460, 214486.                                                                               | 9.5 | 39        |
| 30 | Surfactant-Free Synthesis, Luminescent Properties, and Drug-Release Properties of LaF <sub>3</sub><br>and LaCO <sub>3</sub> F Hollow Microspheres. Inorganic Chemistry, 2014, 53, 998-1008.                                  | 1.9 | 38        |
| 31 | Coordination chemistry of the host matrices with dopant luminescent Ln3+ ion and their impact on luminescent properties. Coordination Chemistry Reviews, 2022, 466, 214584.                                                  | 9.5 | 38        |
| 32 | Dopamine-mediated photothermal theranostics combined with up-conversion platform under near infrared light. Scientific Reports, 2017, 7, 13562.                                                                              | 1.6 | 37        |
| 33 | Design, fabrication, luminescence and biomedical applications of<br>UCNPs@mSiO <sub>2</sub> –ZnPc–CDs–P(NIPAm-MAA) nanocomposites. Journal of Materials Chemistry<br>B, 2016, 4, 5883-5894.                                  | 2.9 | 35        |
| 34 | CuS–Pt( <scp>iv</scp> )–PEG–FA nanoparticles for targeted photothermal and chemotherapy. Journal of Materials Chemistry B, 2016, 4, 5938-5946.                                                                               | 2.9 | 30        |
| 35 | LaF <sub>3</sub> :Ln mesoporous spheres: controllable synthesis, tunable luminescence and application for dual-modal chemo-/photo-thermal therapy. Nanoscale, 2014, 6, 14799-14809.                                          | 2.8 | 27        |
| 36 | Peptide functionalized upconversion/NIR II luminescent nanoparticles for targeted imaging and therapy of oral squamous cell carcinoma. Biomaterials Science, 2021, 9, 1000-1007.                                             | 2.6 | 27        |

**RUICHAN LV** 

| #  | Article                                                                                                                                                                                                              | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Degradable magnetic-response photoacoustic/up-conversion luminescence imaging-guided photodynamic/photothermal antitumor therapy. Biomaterials Science, 2019, 7, 4558-4567.                                          | 2.6 | 25        |
| 38 | Markedly enhanced up-conversion luminescence by combining IR-808 dye sensitization and core–shell–shell structures. Dalton Transactions, 2017, 46, 1495-1501.                                                        | 1.6 | 24        |
| 39 | Highly Erbium-Doped Nanoplatform with Enhanced Red Emission for Dual-Modal<br>Optical-Imaging-Guided Photodynamic Therapy. Inorganic Chemistry, 2018, 57, 14594-14602.                                               | 1.9 | 23        |
| 40 | Targeted Luminescent Probes for Precise Upconversion/NIR II Luminescence Diagnosis of Lung<br>Adenocarcinoma. Analytical Chemistry, 2021, 93, 4984-4992.                                                             | 3.2 | 20        |
| 41 | Self-produced bubble-template synthesis of La <sub>2</sub> O <sub>3</sub> :Yb/Er@Au hollow spheres with markedly enhanced luminescence and release properties. CrystEngComm, 2014, 16, 9612-9621.                    | 1.3 | 17        |
| 42 | Surface Plasmonic Enhanced Imaging-Guided Photothermal/Photodynamic Therapy Based on<br>Lanthanide–Metal Nanocomposites under Single 808 nm Laser. ACS Biomaterials Science and<br>Engineering, 2019, 5, 5051-5059.  | 2.6 | 17        |
| 43 | When a Semiconductor Utilized as an NIR Laser-Responsive Photodynamic/Photothermal Theranostic<br>Agent Integrates with Upconversion Nanoparticles. ACS Biomaterials Science and Engineering, 2019, 5,<br>3100-3110. | 2.6 | 17        |
| 44 | UCNPs@gelatin–ZnPc nanocomposite: synthesis, imaging and anticancer properties. Journal of<br>Materials Chemistry B, 2016, 4, 4138-4146.                                                                             | 2.9 | 15        |
| 45 | Improved Red Emission and Short-Wavelength Infrared Luminescence under 808 nm Laser for Tumor<br>Theranostics. ACS Biomaterials Science and Engineering, 2019, 5, 4683-4691.                                         | 2.6 | 15        |
| 46 | Degradable pH-responsive NIR-II imaging probes based on a polymer-lanthanide composite for chemotherapy. Dalton Transactions, 2020, 49, 9444-9453.                                                                   | 1.6 | 15        |
| 47 | MET-targeted NIR II luminescence diagnosis and up-conversion guided photodynamic therapy for triple-negative breast cancer based on a lanthanide nanoprobe. Nanoscale, 2021, 13, 18125-18133.                        | 2.8 | 15        |
| 48 | Optimization of Red Luminescent Intensity in Eu <sup>3+</sup> -Doped Lanthanide Phosphors Using<br>Genetic Algorithm. ACS Biomaterials Science and Engineering, 2018, 4, 4378-4384.                                  | 2.6 | 13        |
| 49 | Multilevel Nanoarchitecture Exhibiting Biosensing for Cancer Diagnostics by Dual-Modal Switching of Optical and Magnetic Resonance Signals. ACS Applied Bio Materials, 2018, 1, 1505-1511.                           | 2.3 | 13        |
| 50 | Met-Targeted Dual-Modal MRI/NIR II Imaging for Specific Recognition of Head and Neck Squamous Cell<br>Carcinoma. ACS Biomaterials Science and Engineering, 2021, 7, 1640-1650.                                       | 2.6 | 13        |
| 51 | Up-Conversion Luminescence Properties of Lanthanide-Gold Hybrid Nanoparticles as Analyzed with Discrete Dipole Approximation. Nanomaterials, 2018, 8, 989.                                                           | 1.9 | 12        |
| 52 | Searching for the Optimized Luminescent Lanthanide Phosphor Using Heuristic Algorithms. Inorganic<br>Chemistry, 2019, 58, 6458-6466.                                                                                 | 1.9 | 12        |
| 53 | NIR II Luminescence Imaging for Sentinel Lymph Node and Enhanced Chemo-/Photothermal Therapy for<br>Breast Cancer. Bioconjugate Chemistry, 2021, 32, 2117-2127.                                                      | 1.8 | 12        |
| 54 | Multifunctional LaPO <sub>4</sub> :Ce/Tb@Au mesoporous microspheres: synthesis, luminescence and controllable light triggered drug release. RSC Advances, 2014, 4, 63425-63435.                                      | 1.7 | 11        |

**RUICHAN LV** 

| #  | Article                                                                                                                                                                                         | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Lanthanide-Based Nanocomposites for Photothermal Therapy under Near-Infrared Laser: Relationship between Light and Heat, Biostability, and Reaction Temperature. Langmuir, 2020, 36, 4033-4043. | 1.6 | 11        |
| 56 | Optimized Multimetal Sensitized Phosphor for Enhanced Red Up-Conversion Luminescence by Machine<br>Learning. ACS Combinatorial Science, 2020, 22, 285-296.                                      | 3.8 | 11        |
| 57 | A cheap and facile route to synthesize monodisperse magnetic nanocrystals and their application as MRI agents. Dalton Transactions, 2015, 44, 247-253.                                          | 1.6 | 9         |
| 58 | Mesoporous semiconductors combined with up-conversion nanoparticles for enhanced photodynamic therapy under near infrared light. RSC Advances, 2019, 9, 17273-17280.                            | 1.7 | 9         |
| 59 | Plasmonic modulated upconversion fluorescence by adjustable distributed gold nanoparticles.<br>Journal of Luminescence, 2020, 220, 116974.                                                      | 1.5 | 9         |
| 60 | A Magnified Adaptive Feature Pyramid Network for automatic microaneurysms detection. Computers in<br>Biology and Medicine, 2021, 139, 105000.                                                   | 3.9 | 9         |
| 61 | An optimized lanthanide-chlorophyll nanocomposite for dual-modal imaging-guided surgery navigation and anti-cancer theranostics. Biomaterials Science, 2020, 8, 1270-1278.                      | 2.6 | 8         |
| 62 | Mesoporous NaYF <sub>4</sub> :Yb,Er@Au–Pt( <scp>iv</scp> )-FA nanospheres for dual-modal imaging<br>and synergistic photothermal/chemo-anti-cancer therapy. RSC Advances, 2015, 5, 43391-43401. | 1.7 | 7         |
| 63 | Synthesis, luminescence, and anti-tumor properties of MgSiO3:Eu-DOX-DPP-RGD hollow microspheres.<br>Dalton Transactions, 2015, 44, 18585-18595.                                                 | 1.6 | 5         |
| 64 | Transferred Photothermal to Photodynamic Therapy Based on the Marriage of Ultrathin Titanium<br>Carbide and Up-Conversion Nanoparticles. Langmuir, 2020, 36, 13060-13069.                       | 1.6 | 5         |
| 65 | Exosome-based rare earth nanoparticles for targeted <i>in situ</i> and metastatic tumor imaging with chemo-assisted immunotherapy. Biomaterials Science, 2022, 10, 744-752.                     | 2.6 | 5         |
| 66 | Early diagnosis and bioimaging of lung adenocarcinoma cells/organs based on spectroscopy machine<br>learning. Journal of Innovative Optical Health Sciences, 2022, 15, .                        | 0.5 | 5         |
| 67 | Rare earth nanoparticles for sprayed and intravenous NIR II imaging and photodynamic therapy of tongue cancer. Nanoscale Advances, 2022, 4, 2224-2232.                                          | 2.2 | 4         |
| 68 | Near-infrared light-induced imaging and targeted anti-cancer therapy based on a yolk/shell structure.<br>RSC Advances, 2016, 6, 21590-21599.                                                    | 1.7 | 3         |
| 69 | Dual-molecular targeted NIR II probe with enhanced response for head and neck squamous cell carcinoma imaging. Nanotechnology, 2022, 33, 225101.                                                | 1.3 | 2         |
| 70 | Gold Nanostars Combined with the Searched Antibody for Targeted Oral Squamous Cell Carcinoma<br>Therapy. ACS Biomaterials Science and Engineering, 2022, 8, 2664-2675.                          | 2.6 | 1         |
| 71 | Lanthanide-semiconductor probes for precise imaging-guided phototherapy and immunotherapy.<br>Journal of Bio-X Research, 2020, 3, 193-204.                                                      | 0.3 | 0         |