Olle Söderman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5439501/publications.pdf

Version: 2024-02-01

46 papers 2,089 citations

257450 24 h-index 233421 45 g-index

47 all docs

47 docs citations

times ranked

47

2048 citing authors

#	Article	IF	CITATIONS
1	NMR studies of complex surfactant systems. Progress in Nuclear Magnetic Resonance Spectroscopy, 1994, 26, 445-482.	7.5	310
2	The formation of host–guest complexes between surfactants and cyclodextrins. Advances in Colloid and Interface Science, 2014, 205, 156-176.	14.7	163
3	Physicalâ^'Chemical Properties of then-Octyl β-d-Glucoside/Water System. A Phase Diagram, Self-Diffusion NMR, and SAXS Study. Langmuir, 1996, 12, 902-908.	3.5	155
4	NMR studies of surfactants. Concepts in Magnetic Resonance Part A: Bridging Education and Research, 2004, 23A, 121-135.	0.5	144
5	Diffusion of Water Absorbed in Cellulose Fibers Studied with1H-NMR. Langmuir, 2001, 17, 2694-2702.	3.5	132
6	Physicalâ^'Chemical Properties of C9G1 and C10G1 β-Alkylglucosides. Phase Diagrams and Aggregate Size/Structure. Langmuir, 1998, 14, 4050-4058.	3.5	80
7	Electroâ€osmosis: Velocity profiles in different geometries with both temporal and spatial resolution. Journal of Chemical Physics, 1996, 105, 10300-10311.	3.0	76
8	Self-diffusion in polymer systems studied by magnetic field-gradient spin-echo NMR methods. Progress in Nuclear Magnetic Resonance Spectroscopy, 2010, 56, 406-425.	7.5	76
9	Surfactant/Nonionic Polymer Interaction. A NMR Diffusometry and NMR Electrophoretic Investigation. Langmuir, 2004, 20, 1138-1143.	3.5	70
10	PFG-NMR Diffusion as a Method To Investigate the Equilibrium Adsorption Dynamics of Surfactants at the Solid/Liquid Interface. Journal of Physical Chemistry B, 1997, 101, 8237-8242.	2.6	67
11	Title is missing!. Cellulose, 2002, 9, 139-147.	4.9	63
12	Titration of Fatty Acids Solubilized in Cationic, Nonionic, and Anionic Micelles. Theory and Experiment. Journal of Physical Chemistry B, 2002, 106, 3515-3522.	2.6	51
13	Phase Diagram and Thermodynamics of the n-Octyl \hat{l}^2 -d-Glucoside/Water System. Journal of Physical Chemistry B, 2002, 106, 2910-2917.	2.6	50
14	An NMR Self-Diffusion Investigation of Aggregation Phenomena in Solutions of Ethyl(hydroxyethyl)cellulose. Macromolecules, 1998, 31, 4990-5002.	4.8	44
15	Variation in Degree of Counterion Binding to Cesium Perfluorooctanoate Micelles with Surfactant Concentration Studied by133Cs and19F NMR. Langmuir, 2000, 16, 318-323.	3.5	40
16	NMR quantification of diffusional exchange in cell suspensions with relaxation rate differences between intra and extracellular compartments. PLoS ONE, 2017, 12, e0177273.	2.5	37
17	Phase behavior in the biologically important oleic acid/sodium oleate/water system. Chemistry and Physics of Lipids, 2018, 211, 30-36.	3.2	33
18	Phase Separation and Aggregateâ^'Aggregate Interactions in the C9G1/C10G1β-Alkyl Glucosides/Water System. A Phase Diagram and NMR Self-Diffusion Study. Langmuir, 1998, 14, 6396-6402.	3. 5	32

#	Article	IF	Citations
19	2H and 13C nuclear magnetic relaxation studies of the cubic liquid-crystalline phase I1 in the sodium octanoate–octane–water system. Journal of the Chemical Society Faraday Transactions I, 1987, 83, 1515.	1.0	31
20	Titration of Fatty Acids in Sugar-Derived (APG) Surfactants:Â A13C NMR Study of the Effect of Headgroup Size, Chain Length, and Concentration on Fatty Acid pKaat a Nonionic Micellar Interface. Journal of Physical Chemistry B, 2003, 107, 1001-1005.	2.6	29
21	Phase diagram and physicochemical properties of the n-octyl α-d-glucoside/water system. Physical Chemistry Chemical Physics, 2003, 5, 5262-5270.	2.8	29
22	Phase Behavior and Characterization of Micellar and Cubic Phases in the Nonionic Surfactant C〈17〉E〈84〉/Water System. A PFG NMR, SAXS, Cryo-TEM, and Fluorescence Study. Langmuir, 199	98, ³ 1 ⁵ 4, 573	30- 3 739.
23	Microstructure of Proteinâ^'Surfactant Complexes in Gel and SolutionAn NMR Relaxation Study. Langmuir, 1999, 15, 5480-5488.	3.5	27
24	Microemulsions in the Didodecyldimethylammonium Sulfate (Bromide)/Hydrocarbon/Water System. Microstructure and Specific Counterion Effects. Langmuir, 2001, 17, 6794-6803.	3.5	25
25	Do Cyclodextrins Aggregate in Water? Insights from NMR Experiments. Langmuir, 2015, 31, 6314-6320.	3.5	24
26	Ribbon phases in surfactant systems Comparisons between experimental results and predictions of a theoretical model. Liquid Crystals, 1994, 17, 157-177.	2.2	23
27	A Structural Investigation of CaAOT/Water/Oil Microemulsions. Langmuir, 2000, 16, 442-450.	3.5	23
28	Titration of Fatty Acids Solubilized in Cationic and Anionic Micelles. Calorimetry and Thermodynamic Modeling. Journal of Physical Chemistry B, 2006, 110, 3288-3293.	2.6	23
29	Frequency dependent2H N.M.R. relaxation rates of small unilamellar phospholipid vesicles. Molecular Physics, 1990, 69, 379-383.	1.7	21
30	The Structure of a Lyotropic Liquid Crystalline Phase that Orients in a Magnetic Field. Molecular Crystals and Liquid Crystals, 1980, 59, 121-136.	0.8	20
31	Multicomponent Interdiffusion and Self-Diffusion of the Cationic Poly{[9,9-bis(6′- <i>N</i> , <i>N</i> , <i>N</i> -trimethylammonium)hexyl]fluorene-phenylene} Dibromide in a Dimethyl Sulfoxide + Water Solution. Journal of Chemical & Dipromide in Data, 2010, 55, 1860-1866.	1.9	18
32	Alkali counterion binding specificity in lamellar liquid crystals. Journal of Colloid and Interface Science, 1980, 78, 110-117.	9.4	17
33	Correlation of resolution with frictional coefficients and pKa values in capillary electrophoresis of four diuretics: Determination of electric field strength and electroosmotic velocity. Journal of Separation Science, 1993, 5, 451-457.	1.0	16
34	Pulsed Field Gradient NMR Studies of Translational Diffusion in Cylindrical Surfactant Aggregates. Journal of Physical Chemistry B, 1997, 101, 9710-9716.	2.6	15
35	Internal Dynamics and Order Parameters in Surfactant Aggregates:Â A 2H NMR Study of Adsorption Layers and Bulk Phases. Langmuir, 2000, 16, 3971-3976.	3.5	15
36	Hyaluronic acid–collagen network interactions during the dynamic compression and recovery of cartilage. Soft Matter, 2012, 8, 9906.	2.7	14

#	Article	IF	CITATIONS
37	Aggregate morphology and flow behaviour of micellar alkylglycoside solutions. Colloid and Polymer Science, 2005, 283, 1313-1320.	2.1	12
38	Short range forces in surfactant systems. Specific ion-effects and ion competition. Current Opinion in Colloid and Interface Science, 2004, 9, 154-157.	7.4	11
39	NMR Studies of Bicontinuous Liquid Crystalline Phases of Cubic Symmetry: Interpretation of Frequency-Dependent Relaxation Rates. Langmuir, 2020, 36, 5927-5934.	3.5	11
40	The interaction constants in 13C and 2H nuclear magnetic resonance relaxation studies. Journal of Magnetic Resonance, 1986, 68, 296-302.	0.5	10
41	Some "Reflections―on the Effects of Finite Gradient Pulse Lengths in PGSE NMR Experiments in Restricted Systems. Israel Journal of Chemistry, 2010, 43, 25-32.	2.3	7
42	Investigations of vesicle gels by pulsed and modulated gradient NMR diffusion techniques. Soft Matter, 2011, 7, 3947.	2.7	5
43	Effect of Oligomerization of Counterions on Water Activity in Aqueous Cationic Surfactant Systems. Journal of Physical Chemistry B, 2016, 120, 6961-6968.	2.6	4
44	Electrostatic interactions are important for the distribution of Gd(DTPA) ^{2â^'} in articular cartilage. Magnetic Resonance in Medicine, 2016, 76, 500-509.	3.0	4
45	Molecular Assembly in Block Copolymer-Surfactant Nanoparticle Dispersions: Information on Molecular Exchange and Apparent Solubility from High-Resolution and PFG NMR. Polymers, 2021, 13, 3265.	4. 5	4
46	Intermolecular interactions play a role in the distribution and transport of charged contrast agents in a cartilage model. PLoS ONE, 2019, 14, e0215047.	2.5	0