

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5439452/publications.pdf Version: 2024-02-01

XII ZONC

#	Article	IF	CITATIONS
1	Boosting Electrochemical Water Oxidation on NiFe (oxy) Hydroxides by Constructing Schottky Junction toward Water Electrolysis under Industrial Conditions. Small, 2022, 18, e2105544.	5.2	38
2	Designing a Z-scheme system based on photocatalyst panels towards separated hydrogen and oxygen production from overall water splitting. Catalysis Science and Technology, 2022, 12, 572-578.	2.1	4
3	Mechanistic Understanding of Efficient Photocatalytic H ₂ Evolution on Twoâ€Dimensional Layered Lead Iodide Hybrid Perovskites. Angewandte Chemie - International Edition, 2021, 60, 7376-7381.	7.2	48
4	Mechanistic Understanding of Efficient Photocatalytic H ₂ Evolution on Twoâ€Đimensional Layered Lead Iodide Hybrid Perovskites. Angewandte Chemie, 2021, 133, 7452-7457.	1.6	9
5	Shallow Oxygen Substitution Defect to Deeper Defect Transformation Mechanism in Ta ₃ N ₅ under Light Irradiation. Journal of Physical Chemistry Letters, 2021, 12, 3698-3704.	2.1	3
6	High-Performance Solar Redox Flow Battery toward Efficient Overall Splitting of Hydrogen Sulfide. ACS Energy Letters, 2020, 5, 597-603.	8.8	25
7	Establishing inorganic-biological hybrid photoelectrochemical platform towards sustainable conversion of α-chitin. Applied Catalysis B: Environmental, 2020, 265, 118558.	10.8	9
8	Carbon Encapsulation of Organic–Inorganic Hybrid Perovskite toward Efficient and Stable Photoâ€Electrochemical Carbon Dioxide Reduction. Advanced Energy Materials, 2020, 10, 2002105.	10.2	44
9	Reducing the surface defects of Ta ₃ N ₅ photoanode towards enhanced photoelectrochemical water oxidation. Journal of Materials Chemistry A, 2020, 8, 23274-23283.	5.2	16
10	Oxygen vacancy engineering with flame heating approach towards enhanced photoelectrochemical water oxidation on WO3 photoanode. Nano Energy, 2020, 77, 105190.	8.2	65
11	Photo–thermo Catalytic Oxidation over a TiO ₂ â€WO ₃ ‣upported Platinum Catalyst. Angewandte Chemie - International Edition, 2020, 59, 12909-12916.	7.2	75
12	Organicâ~inorganic hybrid perovskites: Game-changing candidates for solar fuel production. Nano Energy, 2020, 71, 104647.	8.2	41
13	Promoting Photocatalytic H ₂ Evolution on Organic–Inorganic Hybrid Perovskite Nanocrystals by Simultaneous Dual-Charge Transportation Modulation. ACS Energy Letters, 2019, 4, 40-47.	8.8	127
14	Dynamic Interaction between Methylammonium Lead Iodide and TiO ₂ Nanocrystals Leads to Enhanced Photocatalytic H ₂ Evolution from HI Splitting. ACS Energy Letters, 2018, 3, 1159-1164.	8.8	147
15	Metal phosphide catalysts anchored on metal-caged graphitic carbon towards efficient and durable hydrogen evolution electrocatalysis. Nano Energy, 2018, 48, 500-509.	8.2	66
16	Achieving Simultaneous CO ₂ and H ₂ S Conversion via a Coupled Solarâ€Driven Electrochemical Approach on Nonâ€Preciousâ€Metal Catalysts. Angewandte Chemie - International Edition, 2018, 57, 3473-3477.	7.2	46
17	Achieving Simultaneous CO ₂ and H ₂ S Conversion via a Coupled Solarâ€Driven Electrochemical Approach on Nonâ€Preciousâ€Metal Catalysts. Angewandte Chemie, 2018, 130, 3531-3535.	1.6	9
18	Fabrication of a Robust Tantalum Nitride Photoanode from a Flameâ€Heatingâ€Derived Compact Oxide Film. ChemPhotoChem, 2018, 2, 249-256.	1.5	5

#	Article	IF	CITATIONS
19	Amorphous Multi-elements Electrocatalysts with Tunable Bifunctionality toward Overall Water Splitting. ACS Catalysis, 2018, 8, 9926-9935.	5.5	121
20	A Sandwich‣ike Organolead Halide Perovskite Photocathode for Efficient and Durable Photoelectrochemical Hydrogen Evolution in Water. Advanced Energy Materials, 2018, 8, 1800795.	10.2	106
21	Photocatalytic water splitting on metal oxide-based semiconductor photocatalysts. , 2018, , 355-399.		12
22	Binary Fe, Cu-doped bamboo-like carbon nanotubes as efficient catalyst for the oxygen reduction reaction. Nano Energy, 2017, 37, 187-194.	8.2	125
23	Functions in cooperation for enhanced oxygen reduction reaction: the independent roles of oxygen and nitrogen sites in metal-free nanocarbon and their functional synergy. Journal of Materials Chemistry A, 2017, 5, 3239-3248.	5.2	37
24	Promoting Charge Separation and Injection by Optimizing the Interfaces of GaN:ZnO Photoanode for Efficient Solar Water Oxidation. ACS Applied Materials & amp; Interfaces, 2017, 9, 30696-30702.	4.0	34
25	Nanohybrid materials of titania nanosheets and plasmonic gold nanoparticles for effective hydrogen evolution. Applied Catalysis A: General, 2016, 521, 96-103.	2.2	16
26	Decorating mesoporous silicon with amorphous metal–phosphorous-derived nanocatalysts towards enhanced photoelectrochemical water reduction. Journal of Materials Chemistry A, 2016, 4, 14960-14967.	5.2	16
27	Integrating Perovskite Photovoltaics and Noble-Metal-Free Catalysts toward Efficient Solar Energy Conversion and H ₂ S Splitting. ACS Catalysis, 2016, 6, 6198-6206.	5.5	40
28	Spatially Separated Photosystem II and a Silicon Photoelectrochemical Cell for Overall Water Splitting: A Natural–Artificial Photosynthetic Hybrid. Angewandte Chemie, 2016, 128, 9375-9379.	1.6	15
29	Spatially Separated Photosystem II and a Silicon Photoelectrochemical Cell for Overall Water Splitting: A Natural–Artificial Photosynthetic Hybrid. Angewandte Chemie - International Edition, 2016, 55, 9229-9233.	7.2	49
30	Moistureâ€Assisted Preparation of Compact GaN:ZnO Photoanode Toward Efficient Photoelectrochemical Water Oxidation. Advanced Energy Materials, 2016, 6, 1600864.	10.2	54
31	Integrating a dual-silicon photoelectrochemical cell into a redox flow battery for unassisted photocharging. Nature Communications, 2016, 7, 11474.	5.8	120
32	Understanding the anatase–rutile phase junction in charge separation and transfer in a TiO ₂ electrode for photoelectrochemical water splitting. Chemical Science, 2016, 7, 6076-6082.	3.7	138
33	An artificial photosynthetic system containing an inorganic semiconductor and a molecular catalyst for photocatalytic water oxidation. Journal of Catalysis, 2016, 338, 168-173.	3.1	66
34	A nanohybrid of CdTe@CdS nanocrystals and titania nanosheets with p–n nanojunctions for improved visible light-driven hydrogen production. Catalysis Today, 2016, 264, 229-235.	2.2	24
35	Cu ₂ O/CuO photocathode with improved stability for photoelectrochemical water reduction. RSC Advances, 2015, 5, 10790-10794.	1.7	94
36	A new Pb(<scp>iv</scp>)-based photocathode material Sr ₂ PbO ₄ with good light harvesting ability. Journal of Materials Chemistry A, 2015, 3, 12051-12058.	5.2	5

#	Article	IF	CITATIONS
37	Boosting the efficiency of quantum dot sensitized solar cells up to 7.11% through simultaneous engineering of photocathode and photoanode. Nano Energy, 2015, 13, 609-619.	8.2	72
38	Energetic requirements of iridium(<scp>iii</scp>) complex based photosensitisers in photocatalytic hydrogen generation. Physical Chemistry Chemical Physics, 2014, 16, 21577-21585.	1.3	17
39	Photocatalytic hydrogen production in a noble-metal-free system catalyzed by in situ grown molybdenum sulfide catalyst. Journal of Catalysis, 2014, 310, 51-56.	3.1	62
40	An Integrated Photoelectrochemical–Chemical Loop for Solarâ€Driven Overall Splitting of Hydrogen Sulfide. Angewandte Chemie - International Edition, 2014, 53, 4399-4403.	7.2	79
41	A new type of carbon nitride-based polymer composite for enhanced photocatalytic hydrogen production. Chemical Communications, 2014, 50, 6762-6764.	2.2	86
42	Ion-exchangeable semiconductor materials for visible light-induced photocatalysis. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2014, 18, 32-49.	5.6	64
43	Step-wise controlled growth of metal@TiO ₂ core–shells with plasmonic hot spots and their photocatalytic properties. Journal of Materials Chemistry A, 2014, 2, 12776.	5.2	45
44	Selective production of hydrogen peroxide and oxidation of hydrogen sulfide in an unbiased solar photoelectrochemical cell. Energy and Environmental Science, 2014, 7, 3347-3351.	15.6	57
45	A hematite photoanode with gradient structure shows an unprecedentedly low onset potential for photoelectrochemical water oxidation. Physical Chemistry Chemical Physics, 2014, 16, 23544-23548.	1.3	41
46	Scalable Low ost SnS ₂ Nanosheets as Counter Electrode Building Blocks for Dye‣ensitized Solar Cells. Chemistry - A European Journal, 2014, 20, 8670-8676.	1.7	78
47	Hydrothermal Synthesis of a Crystalline Rutile TiO ₂ Nanorod Based Network for Efficient Dye‣ensitized Solar Cells. Chemistry - A European Journal, 2013, 19, 13569-13574.	1.7	62
48	On the engineering part of solar hydrogen production from water splitting: Photoreactor design. Chemical Engineering Science, 2013, 104, 125-146.	1.9	87
49	A scalable colloidal approach to prepare hematite films for efficient solar water splitting. Physical Chemistry Chemical Physics, 2013, 15, 12314.	1.3	46
50	Activation of Photocatalytic Water Oxidation on N-Doped ZnO Bundle-like Nanoparticles under Visible Light. Journal of Physical Chemistry C, 2013, 117, 4937-4942.	1.5	143
51	An nâ€Type to pâ€Type Switchable Photoelectrode Assembled from Alternating Exfoliated Titania Nanosheets and Polyaniline Layers. Angewandte Chemie - International Edition, 2013, 52, 6400-6403.	7.2	32
52	Roles of cocatalysts in semiconductor-based photocatalytic hydrogen production. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2013, 371, 20110430.	1.6	43
53	Nonmetal Doping in TiO2 Toward Visible-Light-Induced Photocatalysis. Handbook of Environmental Chemistry, 2013, , 87-113.	0.2	2
54	An n‶ype to p‶ype Switchable Photoelectrode Assembled from Alternating Exfoliated Titania Nanosheets and Polyaniline Layers. Angewandte Chemie, 2013, 125, 6528-6531.	1.6	2

#	Article	IF	CITATIONS
55	Facile one-pot synthesis of Eu, N-codoped mesoporous titania microspheres with yolk-shell structure and high visible-light induced photocatalytic performance. Applied Catalysis A: General, 2012, 435-436, 86-92.	2.2	33
56	Ordered mesoporous tungsten oxide and titanium oxide composites and their photocatalytic degradation behavior. Progress in Natural Science: Materials International, 2012, 22, 654-660.	1.8	25
57	Photocatalytic Water Oxidation on BiVO ₄ with the Electrocatalyst as an Oxidation Cocatalyst: Essential Relations between Electrocatalyst and Photocatalyst. Journal of Physical Chemistry C, 2012, 116, 5082-5089.	1.5	360
58	Photocatalytic H ₂ production on Pt/TiO ₂ –SO ₄ ^{2â^'} with tuned surface-phase structures: enhancing activity and reducing CO formation. Energy and Environmental Science, 2012, 5, 6345-6351.	15.6	89
59	Cubic CeO2 nanoparticles as mirror-like scattering layers for efficient light harvesting in dye-sensitized solar cells. Chemical Communications, 2012, 48, 7386.	2.2	83
60	Carbonâ€doped Titania Hollow Spheres with Tunable Hierarchical Macroporous Channels and Enhanced Visible Lightâ€induced Photocatalytic Activity. ChemCatChem, 2012, 4, 488-491.	1.8	46
61	Low temperature synthesis of visible light responsive rutile TiO2 nanorods from TiC precursor. Frontiers of Chemical Science and Engineering, 2012, 6, 53-57.	2.3	7
62	Low-temperature synthesis of CdS/TiO2 composite photocatalysts: Influence of synthetic procedure on photocatalytic activity under visible light. Journal of Molecular Catalysis A, 2012, 356, 53-60.	4.8	114
63	Nitrogen doping in ion-exchangeable layered tantalate towards visible-light induced water oxidation. Chemical Communications, 2011, 47, 6293.	2.2	59
64	Photocatalytic H ₂ Evolution on CdS Loaded with WS ₂ as Cocatalyst under Visible Light Irradiation. Journal of Physical Chemistry C, 2011, 115, 12202-12208.	1.5	376
65	Photocatalytic water oxidation on F, N co-doped TiO2 with dominant exposed {001} facets under visible light. Chemical Communications, 2011, 47, 11742.	2.2	73
66	New layered semiconductors for efficient photoelectrochemical hydrogen and oxygen generation. , 2011, , .		0
67	Photocatalytic H2 production on hybrid catalyst system composed of inorganic semiconductor and cobaloximes catalysts. Journal of Catalysis, 2011, 281, 318-324.	3.1	102
68	Crystal Facet Dependence of Water Oxidation on BiVO ₄ Sheets under Visible Light Irradiation. Chemistry - A European Journal, 2011, 17, 1275-1282.	1.7	351
69	Photocatalytic H ₂ Evolution on MoS ₂ /CdS Catalysts under Visible Light Irradiation. Journal of Physical Chemistry C, 2010, 114, 1963-1968.	1.5	381
70	Visible-light-driven hydrogen production with extremely high quantum efficiency on Pt–PdS/CdS photocatalyst. Journal of Catalysis, 2009, 266, 165-168.	3.1	1,039
71	Visible light driven H2 production in molecular systems employing colloidal MoS2 nanoparticles as catalyst. Chemical Communications, 2009, , 4536.	2.2	116
72	H2 production with low CO selectivity from photocatalytic reforming of glucose on metal/TiO2 catalysts. Science in China Series B: Chemistry, 2008, 51, 97-100.	0.8	64

#	Article	IF	CITATIONS
73	H2 production with ultra-low CO selectivity via photocatalytic reforming of methanol on Au/TiO2 catalyst. International Journal of Hydrogen Energy, 2008, 33, 1243-1251.	3.8	139
74	Photocatalytic Splitting of H2S to Produce Hydrogen by Gas-Solid Phase Reaction. Chinese Journal of Catalysis, 2008, 29, 313-315.	6.9	28
75	Suppressing CO formation by anion adsorption and Pt deposition on TiO2 in H2 production from photocatalytic reforming of methanol. Journal of Catalysis, 2008, 253, 225-227.	3.1	49
76	Direct splitting of H2S into H2 and S on CdS-based photocatalyst under visible light irradiation. Journal of Catalysis, 2008, 260, 134-140.	3.1	140
77	Enhancement of Photocatalytic H ₂ Evolution on CdS by Loading MoS ₂ as Cocatalyst under Visible Light Irradiation. Journal of the American Chemical Society, 2008, 130, 7176-7177.	6.6	1,752