
## Alexander V Vodopyanov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/543940/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                    | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | A point-like source of extreme ultraviolet radiation based on a discharge in a non-uniform gas flow,<br>sustained by powerful gyrotron radiation of terahertz frequency band. Applied Physics Letters, 2014,<br>105, .     | 3.3 | 66        |
| 2  | Formation of multi-charged ions and plasma stability at quasigasdynamic plasma confinement in a mirror magnetic trap. Review of Scientific Instruments, 2000, 71, 669-671.                                                 | 1.3 | 39        |
| 3  | New progress of high current gasdynamic ion source (invited). Review of Scientific Instruments, 2016,<br>87, 02A716.                                                                                                       | 1.3 | 38        |
| 4  | Multiple ionization of metal ions by ECR heating of electrons in vacuum arc plasmas. Review of Scientific Instruments, 2004, 75, 1888-1890.                                                                                | 1.3 | 35        |
| 5  | High current ECR source of multicharged ion beams. Nuclear Instruments & Methods in Physics<br>Research B, 2007, 256, 537-542.                                                                                             | 1.4 | 35        |
| 6  | Observation of pulsed fast electron precipitations and the cyclotron generation mechanism of burst<br>activity in a decaying ECR discharge plasma. Journal of Experimental and Theoretical Physics, 2007, 104,<br>296-306. | 0.9 | 27        |
| 7  | Application of the 263ÂGHz/1ÂkW gyrotron setup to produce a metal oxide nanopowder by the evaporation-condensation technique. Vacuum, 2017, 145, 340-346.                                                                  | 3.5 | 26        |
| 8  | Observation of extreme ultraviolet light emission from an expanding plasma jet with multiply charged<br>argon or xenon ions. Applied Physics Letters, 2018, 113, .                                                         | 3.3 | 25        |
| 9  | High current density ion beam formation from plasma of electron cyclotron resonance discharge.<br>Review of Scientific Instruments, 2004, 75, 1675-1677.                                                                   | 1.3 | 23        |
| 10 | Experimental investigations of silicon tetrafluoride decomposition in ECR discharge plasma. Review of Scientific Instruments, 2011, 82, 063503.                                                                            | 1.3 | 23        |
| 11 | Gyrotron Microwave Heating of Vacuum Arc Plasma for High-Charge-State Metal Ion Beam Generation.<br>IEEE Transactions on Plasma Science, 2013, 41, 2081-2086.                                                              | 1.3 | 23        |
| 12 | Maser based on cyclotron resonance in a decaying plasma. JETP Letters, 2006, 84, 314-319.                                                                                                                                  | 1.4 | 22        |
| 13 | Measurement of plasma density in the discharge maintained in a nonuniform gas flow by a high-power<br>terahertz-wave gyrotron. Physics of Plasmas, 2016, 23, .                                                             | 1.9 | 22        |
| 14 | Plasma parameters of an electron cyclotron resonance discharge in a magnetic mirror in a quasi-gasdynamic confinement regime. Technical Physics Letters, 1999, 25, 588-589.                                                | 0.7 | 21        |
| 15 | Multicharged Ion Generation in Plasma Created by Millimeter Waves and Confined in a Cusp Magnetic Trap. Fusion Science and Technology, 2005, 47, 345-347.                                                                  | 1.1 | 21        |
| 16 | Laboratory modeling of nonstationary processes in space cyclotron masers: First results and prospects. Plasma Physics Reports, 2005, 31, 927-937.                                                                          | 0.9 | 21        |
| 17 | Metal Oxide Nanopowder Production by Evaporation–Condensation Using a Focused Microwave<br>Radiation at a Frequency of 24 GHz. Journal of Nanotechnology in Engineering and Medicine, 2015, 6, .                           | 0.8 | 17        |
| 18 | Gas discharge powered by the focused beam of the high-intensive electromagnetic waves of the terahertz frequency band. Journal Physics D: Applied Physics, 2018, 51, 464002.                                               | 2.8 | 17        |

| #  | Article                                                                                                                                                                                                           | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Conversion of carbon dioxide in microwave plasma torch sustained by gyrotron radiation at frequency of 24†GHz at atmospheric pressure. Journal of CO2 Utilization, 2020, 40, 101197.                              | 6.8 | 17        |
| 20 | High current density production of multicharged ions with ECR plasma heated by gyrotron transmitter. Review of Scientific Instruments, 2002, 73, 528-530.                                                         | 1.3 | 16        |
| 21 | Generation of multiply charged refractory metals in an electron-cyclotron resonant discharge in a direct magnetic trap. Technical Physics, 2005, 50, 1207-1211.                                                   | 0.7 | 16        |
| 22 | Plasma of Vacuum Discharges: The Pursuit of Elevating Metal Ion Charge States, Including a Recent<br>Record of Producing Bi <sup>13+</sup> . IEEE Transactions on Plasma Science, 2015, 43, 2310-2317.            | 1.3 | 16        |
| 23 | Source for extreme ultraviolet lithography based on plasma sustained by millimeter-wave gyrotron radiation. Journal of Micro/ Nanolithography, MEMS, and MOEMS, 2012, 11, 021123-1.                               | 0.9 | 14        |
| 24 | Measurement of electron temperature in a non-equilibrium discharge of atmospheric pressure supported by focused microwave radiation from a 24 GHz gyrotron. AIP Advances, 2019, 9, 105009.                        | 1.3 | 14        |
| 25 | Towards 0.99999 28Si. Solid State Communications, 2012, 152, 455-457.                                                                                                                                             | 1.9 | 13        |
| 26 | A double-stream Xe:He jet plasma emission in the vicinity of 6.7 nm. Applied Physics Letters, 2018, 112, .                                                                                                        | 3.3 | 13        |
| 27 | Extreme-ultraviolet source based on the electron-cyclotron-resonance discharge. JETP Letters, 2008, 88, 95-98.                                                                                                    | 1.4 | 12        |
| 28 | Generation of Electromagnetic Bursts in the Plasma Cyclotron Maser. Radiophysics and Quantum Electronics, 2013, 56, 12-19.                                                                                        | 0.5 | 11        |
| 29 | Plasma density in discharge sustained in inhomogeneous gas flow by high-power radiation in the terahertz frequency range. Technical Physics Letters, 2017, 43, 186-189.                                           | 0.7 | 11        |
| 30 | The Radiation Beamline of Novosibirsk Free-Electron Laser Facility Operating in Terahertz,<br>Far-Infrared, and Mid-Infrared Ranges. IEEE Transactions on Terahertz Science and Technology, 2020,<br>10, 634-646. | 3.1 | 11        |
| 31 | Multiple ionization of vacuum-arc-generated metal ions in a magnetic trap heated by high-power microwave radiation. Technical Physics Letters, 2007, 33, 872-874.                                                 | 0.7 | 10        |
| 32 | Deposition of microcrystalline silicon in electron-cyclotron resonance discharge (24GHz) plasma<br>from silicon tetrafluoride precursor. Thin Solid Films, 2014, 562, 114-117.                                    | 1.8 | 10        |
| 33 | Dynamics of the gas discharge in noble gases sustained by the powerful radiation of 0.67 THz gyrotron. Physics of Plasmas, 2020, 27, .                                                                            | 1.9 | 10        |
| 34 | Soft X-rays generated by the electron-cyclotron resonance discharge in heavy gases sustained by a high-power microwave beam in a magnetic trap. Technical Physics Letters, 2000, 26, 1075-1077.                   | 0.7 | 9         |
| 35 | Production of WO3 tungsten oxide nanopowders by evaporation-condensation process using focused 24-GHz microwave radiation. High Energy Chemistry, 2015, 49, 267-272.                                              | 0.9 | 9         |
| 36 | Production of Nanopowders by the Evaporation–Condensation Method Using a Focused Microwave<br>Radiation. Radiophysics and Quantum Electronics, 2017, 59, 698-705.                                                 | 0.5 | 9         |

Alexander V Vodopyanov

| #  | Article                                                                                                                                                                                    | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | An experimental setup for studying the interaction of dense supersonic plasma flows with an arched magnetic field. Technical Physics Letters, 2015, 41, 901-904.                           | 0.7 | 8         |
| 38 | First experiments with gasdynamic ion source in CW mode. Review of Scientific Instruments, 2016, 87, 02A715.                                                                               | 1.3 | 8         |
| 39 | Breakdown of the heavy noble gases in a focused beam of powerful sub-THz gyrotron. Physics of<br>Plasmas, 2019, 26, .                                                                      | 1.9 | 8         |
| 40 | Generation of high charge state platinum ions on vacuum arc plasma heated by gyrotron radiation.<br>Review of Scientific Instruments, 2014, 85, 02B902.                                    | 1.3 | 7         |
| 41 | CW Multifrequency <i>K</i> -Band Source Based on a Helical-Waveguide Gyro-TWT With Delayed Feedback. IEEE Transactions on Electron Devices, 2021, 68, 330-335.                             | 3.0 | 7         |
| 42 | Observation of plasma microwave emission during the injection of supersonic plasma flows into magnetic arch. Plasma Physics and Controlled Fusion, 2017, 59, 075001.                       | 2.1 | 6         |
| 43 | Glow of the Plasma of a Pulse Discharge Produced in Nitrogen by High-Power Terahertz-Wave<br>Radiation. Radiophysics and Quantum Electronics, 2017, 60, 136-142.                           | 0.5 | 6         |
| 44 | Optical emission spectroscopy of non-equilibrium microwave plasma torch sustained by focused radiation of gyrotron at 24 GHz. Journal Physics D: Applied Physics, 2020, 53, 305203.        | 2.8 | 6         |
| 45 | An extreme ultraviolet radiation source based on plasma heated by millimeter range radiation.<br>Bulletin of the Russian Academy of Sciences: Physics, 2011, 75, 64-66.                    | 0.6 | 5         |
| 46 | Plasma enhanced growth of GaN single crystalline layers from Ga vapour. Crystal Research and<br>Technology, 2013, 48, 186-192.                                                             | 1.3 | 5         |
| 47 | Non-equilibrium Atmospheric-Pressure Plasma Torch Sustained in a Quasi-optical Beam of<br>Subterahertz Radiation. Journal of Infrared, Millimeter, and Terahertz Waves, 2020, 41, 711-727. | 2.2 | 5         |
| 48 | Pulsed vacuum arc plasma source of supersonic metal ion flow. Review of Scientific Instruments, 2020, 91, 023302.                                                                          | 1.3 | 5         |
| 49 | High current multicharged metal ion source using high power gyrotron heating of vacuum arc plasma. Review of Scientific Instruments, 2008, 79, 02B304.                                     | 1.3 | 4         |
| 50 | Excitation of electromagnetic waves in dense plasma during the injection of supersonic plasma flows into magnetic arch. AIP Conference Proceedings, 2016, , .                              | 0.4 | 4         |
| 51 | A point-like plasma, sustained by powerful radiation of terahertz gyrotrons, as a source of ultraviolet light. , 2017, , .                                                                 |     | 4         |
| 52 | High rate production of nanopowders by the evaporation – condensation method using gyrotron radiation. EPJ Web of Conferences, 2017, 149, 02022.                                           | 0.3 | 4         |
| 53 | Noise suppression and stabilization of an ion beam extracted from dense plasma. Journal of Applied Physics, 2007, 102, 054504.                                                             | 2.5 | 3         |
| 54 | Glow plasma trigger for electron cyclotron resonance ion sources. Review of Scientific Instruments, 2010, 81, 02A305.                                                                      | 1.3 | 3         |

| #  | Article                                                                                                                                                                                                                                | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Formation of Multicharged Metal Ions in Vacuum Arc Plasma Heated by Gyrotron Radiation. Plasma<br>Science and Technology, 2011, 13, 596-599.                                                                                           | 1.5 | 3         |
| 56 | Chlorineâ€free plasmaâ€based vapour growth of GaN. Physica Status Solidi C: Current Topics in Solid<br>State Physics, 2012, 9, 440-444.                                                                                                | 0.8 | 3         |
| 57 | Monocrystalline InN Films Grown at High Rate by Organometallic Vapor Phase Epitaxy with Nitrogen<br>Plasma Activation Supported by Gyrotron Radiation. Japanese Journal of Applied Physics, 2013, 52,<br>110201.                       | 1.5 | 3         |
| 58 | Microwave Interferometry of Chemically Active Plasma of RF Discharge in Mixtures Based on<br>Fluorides of Silicon and Germanium. Plasma Chemistry and Plasma Processing, 2017, 37, 1655-1661.                                          | 2.4 | 3         |
| 59 | The dynamics of supersonic plasma flow interaction with the magnetic arch. Plasma Physics and Controlled Fusion, 2019, 61, 035001.                                                                                                     | 2.1 | 3         |
| 60 | Measurements of the absolute intensities of spectral lines of Kr, Ar, and O ions in the wavelength range of 10 – 18 nm under pulsed laser excitation. Quantum Electronics, 2021, 51, 700-707.                                          | 1.0 | 3         |
| 61 | Microwave assisted synthesis of WC nanopowder from nanosized multicomponent system W-C produced in thermal plasma reactor. International Journal of Refractory Metals and Hard Materials, 2021, 100, 105618.                           | 3.8 | 3         |
| 62 | Positive column dynamics of a low-current atmospheric pressure discharge in flowing argon. Plasma<br>Sources Science and Technology, 2022, 31, 015009.                                                                                 | 3.1 | 3         |
| 63 | Resonant increase of x-ray emission in a microwave discharge at half-gyrofrequency. Physics of Plasmas, 2002, 9, 2781-2785.                                                                                                            | 1.9 | 2         |
| 64 | Generation of high charge state metal ion beams by electron cyclotron resonance heating of vacuum arc plasma in cusp trap. Review of Scientific Instruments, 2012, 83, 02A309.                                                         | 1.3 | 2         |
| 65 | Growing InN films by plasma-assisted metalorganic vapor-phase epitaxy on Al2O3 and YSZ substrates in plasma generated by gyrotron radiation under electron cyclotron resonance conditions. Technical Physics Letters, 2013, 39, 51-54. | 0.7 | 2         |
| 66 | Experimental investigation of powerful THz gyrotrons for initiation of localized gas discharge. , 2015, , .                                                                                                                            |     | 2         |
| 67 | Kinetic instabilities in a mirror-confined plasma sustained by high-power microwave radiation. AIP Conference Proceedings, 2016, , .                                                                                                   | 0.4 | 2         |
| 68 | Gas breakdown by a focused CW 263 GHz beam. , 2016, , .                                                                                                                                                                                |     | 2         |
| 69 | Sources of ultraviolet light based on microwave discharges. EPJ Web of Conferences, 2017, 149, 02009.                                                                                                                                  | 0.3 | 2         |
| 70 | Gas breakdown by a focused beam of THz waves. EPJ Web of Conferences, 2017, 149, 02031.                                                                                                                                                | 0.3 | 2         |
| 71 | Parameters of a CW Plasma Torch of Atmospheric Pressure Sustained by Focused Sub-Terahertz Gyrotron Radiation. , 2018, , .                                                                                                             |     | 2         |
| 72 | Method for determining plasma density in a magnetic field. Journal of Physics: Conference Series, 2019, 1400, 077022.                                                                                                                  | 0.4 | 2         |

| #  | Article                                                                                                                                                                                                                                       | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Applications of the gas discharge sustained by the powerful radiation of THz gyrotrons. Journal of Physics: Conference Series, 2019, 1400, 077032.                                                                                            | 0.4 | 2         |
| 74 | Dynamics of a Sub-terahertz Discharge in the Heavy Noble Gases Produced by a High-density Radiation<br>Field. , 2019, , .                                                                                                                     |     | 2         |
| 75 | Supersonic Flow of Vacuum Arc Plasma in a Magnetic Field. IEEE Transactions on Plasma Science, 2021, 49, 2478-2489.                                                                                                                           | 1.3 | 2         |
| 76 | THz gas discharge in nitrogen as a source of ultraviolet radiation. Journal of Physics: Conference<br>Series, 2020, 1697, 012213.                                                                                                             | 0.4 | 2         |
| 77 | Electron density and energy distribution function in the plume of a Hall-type thruster. Review of Scientific Instruments, 2002, 73, 931-933.                                                                                                  | 1.3 | 1         |
| 78 | Multiple Ionization Of Metal Ions By ECR Heating Of Electrons In Vacuum Arc Plasmas. AIP Conference<br>Proceedings, 2005, , .                                                                                                                 | 0.4 | 1         |
| 79 | Short-pulse ECR: A source of multiply charged ions. Technical Physics, 2010, 55, 1797-1801.                                                                                                                                                   | 0.7 | 1         |
| 80 | He2+source based on Penning-type discharge with electron cyclotron resonant heating by millimeter waves. Plasma Sources Science and Technology, 2011, 20, 035014.                                                                             | 3.1 | 1         |
| 81 | On the Possibility of ECR-Discharge with Overcritical Plasma Density in Axisymmetrical Magnetic Trap.<br>Fusion Science and Technology, 2011, 59, 223-225.                                                                                    | 1.1 | 1         |
| 82 | Multicharged ion source based on Penning-type discharge with electron cyclotron resonance heating by millimeter waves. Review of Scientific Instruments, 2012, 83, 02A325.                                                                    | 1.3 | 1         |
| 83 | On the feasibility of electron cyclotron heating of overcritical plasma in a magnetic mirror trap.<br>Plasma Physics Reports, 2012, 38, 443-449.                                                                                              | 0.9 | 1         |
| 84 | Indium Nitride Film Growth by Metal Organic Chemical Vapor Deposition with Nitrogen Activation in<br>Electron Cyclotron Resonance Discharge Sustained by 24 GHz Gyrotron Radiation. Japanese Journal of<br>Applied Physics, 2013, 52, 08JD07. | 1.5 | 1         |
| 85 | High-rate growth of InN films on fianite and sapphire substrates by metalorganic vapor phase epitaxy with plasma-assisted nitrogen activation. Technical Physics Letters, 2015, 41, 266-269.                                                  | 0.7 | 1         |
| 86 | Reactive nitrogen source based on ECR discharge sustained by 24 GHz radiation. Japanese Journal of<br>Applied Physics, 2015, 54, 040302.                                                                                                      | 1.5 | 1         |
| 87 | Gas breakdown by a focused beam of CW THz radiation. , 2017, , .                                                                                                                                                                              |     | 1         |
| 88 | Plasma losses from mirror trap, initiated by microwave radiation under electron cyclotron resonance conditions. Plasma Physics and Controlled Fusion, 2018, 60, 115005.                                                                       | 2.1 | 1         |
| 89 | Vacuum Arc Plasma Heated by Sub-Terahertz Radiation as a Source of Extreme Ultraviolet Light. IEEE<br>Transactions on Plasma Science, 2019, 47, 828-831.                                                                                      | 1.3 | 1         |
| 90 | A new plasma-based approach to hydrogen intercalation of graphene. Superlattices and<br>Microstructures, 2021, 160, 107066.                                                                                                                   | 3.1 | 1         |

Alexander V Vodopyanov

| #   | Article                                                                                                                                                                                                                                                 | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Peculiarities of Pulsed Heating by the Radiation of a Subterathertz Gyrotron in the Production of<br>Metal Oxide Nanopowders. Technical Physics Letters, 2020, 46, 760-762.                                                                             | 0.7 | 1         |
| 92  | Studies of terahertz discharge in noble gases using a Michelson interferometer. Journal of Physics:<br>Conference Series, 2020, 1697, 012220.                                                                                                           | 0.4 | 1         |
| 93  | Prospects of the gas-discharge EUV source based on the plasma creation by powerful pulsed terahertz gyrotrons. , 2020, , .                                                                                                                              |     | 1         |
| 94  | Interaction of plasma flow heated by gyrotron radiation with magnetic fields of an arched configuration. , 2020, , .                                                                                                                                    |     | 1         |
| 95  | Stand for Experimentally Studying Local Parameters of Chemically Active Induction Discharge Plasma.<br>Instruments and Experimental Techniques, 2022, 65, 419-425.                                                                                      | 0.5 | 1         |
| 96  | Mirror-Trapped Plasma Heated by High-Power Millimeter-Wave Radiation as an<br>Electron-Cyclotron-Resonanse Source of Soft X-Rays. Japanese Journal of Applied Physics, 2001, 40,<br>1016-1017.                                                          | 1.5 | 0         |
| 97  | Dense nonequilibrium plasma produced by powerful millimeter wave radiation. , 0, , .                                                                                                                                                                    |     | 0         |
| 98  | Source of multicharged ions and extreme ultraviolet radiation based on plasma sustained by gyrotron radiation. , 2008, , .                                                                                                                              |     | 0         |
| 99  | Plasma magneto-compressional cyclotron maser. , 2010, , .                                                                                                                                                                                               |     | 0         |
| 100 | Gyrotron heating of vacuum arc plasma for high charge state metal ion beam generation. , 2012, , .                                                                                                                                                      |     | 0         |
| 101 | Plasma glow dynamics of pulsed nitrogen discharge induced by the powerful terahertz waves. , 2015, , $\cdot$                                                                                                                                            |     | 0         |
| 102 | Measurement of plasma density in the discharge maintained in a nonuniform gas flow by a powerful radiation of terahertz-band gyrotron. , 2016, , .                                                                                                      |     | 0         |
| 103 | Pulse-Periodic Regimes of Kinetic Instabilities in the Non-Equilibrium Plasma of an Electron Cyclotron<br>Resonance Discharge Maintained by Continuous-Wave Radiation of a 24 GHz Gyrotron. Radiophysics<br>and Quantum Electronics, 2017, 59, 706-710. | 0.5 | 0         |
| 104 | Heating of metal powders in the external high-frequency field. , 2017, , .                                                                                                                                                                              |     | 0         |
| 105 | Applications of THz band gyrotrons at IAP RAS: Current state and prospects. , 2017, , .                                                                                                                                                                 |     | 0         |
| 106 | Point-like source of extreme ultraviolet radiation based on the plasma of THz gas discharge in a focused beam. , 2017, , .                                                                                                                              |     | 0         |
| 107 | The heating system of metal particles in the microwave field with a frequency of 24 GHz. , 2017, , .                                                                                                                                                    |     | Ο         |
| 108 | Light emission properties of a discharge induced in a gas flow by terahertz waves in the vacuum and extreme ultraviolet range. EPJ Web of Conferences, 2017, 149, 02032.                                                                                | 0.3 | 0         |

| #   | Article                                                                                                                                                                                                                           | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | On the Prospects for the Study of a Point Discharge Sustained by a Terahertz Free Electron Laser<br>Radiation in an Inhomogeneous Gas Flow. , 2019, , .                                                                           |     | 0         |
| 110 | Supersonic plasma flow injection across the magnetic arch in a table-top laboratory setup. Journal of Physics: Conference Series, 2019, 1400, 077034.                                                                             | 0.4 | 0         |
| 111 | High-Current Vacuum-Arc Plasma Source for Producing Supersonic Plasma Flows in Magnetic Fields. ,<br>2020, , .                                                                                                                    |     | 0         |
| 112 | Tungsten Carbide Nanopowder Synthesis under the Influence of Microwave Electromagnetic<br>Radiation on a W–C System Nanocomposite Produced in a Thermal Plasma. Inorganic Materials: Applied<br>Research, 2021, 12, 735-739.      | 0.5 | 0         |
| 113 | Method to Measure the Dielectric Parameters of Powders in Subterahertz and Terahertz Ranges. IEEE<br>Transactions on Terahertz Science and Technology, 2021, 11, 375-380.                                                         | 3.1 | 0         |
| 114 | Gas Breakdown in the Focused Beam of NovoFEL THz Radiation. , 2021, , .                                                                                                                                                           |     | 0         |
| 115 | TUNGSTEN CARBIDE NANOPOWDER SYNTHESIS UNDER THE EXPOSURE OF 24 GHZ GYROTRON RADIATION ON THE NANOCOMPOSITE OF THE W-C SYSTEM OBTAINED IN A THERMAL PLASMA. , 0, , .                                                               |     | 0         |
| 116 | Study of a gas breakdown in a focused beam of terahertz radiation at the NovoFEL user station.<br>Journal of Physics: Conference Series, 2020, 1697, 012217.                                                                      | 0.4 | 0         |
| 117 | THz range gyrotron-based facility for material science and plasma physics research. , 2020, , .                                                                                                                                   |     | 0         |
| 118 | Gas discharge sustained by the powerful radiation of 0.26 THz CW gyrotron. , 2020, , .                                                                                                                                            |     | 0         |
| 119 | Continuous atmospheric pressure discharges in terahertz and sub-terahertz focused beams. , 2020, , .                                                                                                                              |     | 0         |
| 120 | THz Gas Discharge Sustained by Powerful Gyrotrons in the Mixtures of Noble Gases with Nitrogen. ,<br>2020, , .                                                                                                                    |     | 0         |
| 121 | Prospects for creating an intense ultraviolet source based on the creation of a plasma discharge by a powerful terahertz radiation pulse. , 2020, , .                                                                             |     | 0         |
| 122 | Production of metal oxides nanopowders by evaporation-condensation method when heated by radiation of the 0.26/0.53 THz gyrotron setup. , 2020, , .                                                                               |     | 0         |
| 123 | Preparation of a Highly Dispersed Powder of Tin Monoxide by the Evaporation/Condensation Method under Heating with Focused Radiation of a Subterahertz Gyrotron. Technical Physics Letters, 2021, 47, 255-258.                    | 0.7 | 0         |
| 124 | Powerful terahertz pulsed large-orbit gyrotron for creating an intense ultraviolet plasma source. ,<br>2021, , .                                                                                                                  |     | 0         |
| 125 | Experimental Evaluation of the Temperature Dependence of the Absorption of Metal Oxide Powders<br>Heated by a 527-GHz Gyrotron Radiation. Technical Physics Letters, 2021, 47, 827-829.                                           | 0.7 | 0         |
| 126 | Production of highly dispersed powders of metal-oxides by evaporation-condensation technique<br>when heated by focused radiation of terahertz-range gyrotron setup. Journal of Physics: Conference<br>Series, 2022, 2256, 012030. | 0.4 | 0         |