List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5439376/publications.pdf Version: 2024-02-01

YUEIIII ZHENC

#	Article	IF	CITATIONS
1	A review on the key issues of the lithium ion battery degradation among the whole life cycle. ETransportation, 2019, 1, 100005.	14.8	854
2	A comparative study of commercial lithium ion battery cycle life in electrical vehicle: Aging mechanism identification. Journal of Power Sources, 2014, 251, 38-54.	7.8	554
3	Investigating the error sources of the online state of charge estimation methods for lithium-ion batteries in electric vehicles. Journal of Power Sources, 2018, 377, 161-188.	7.8	330
4	A comparative study of different equivalent circuit models for estimating state-of-charge of lithium-ion batteries. Electrochimica Acta, 2018, 259, 566-577.	5.2	282
5	State-of-charge inconsistency estimation of lithium-ion battery pack using mean-difference model and extended Kalman filter. Journal of Power Sources, 2018, 383, 50-58.	7.8	192
6	Internal short circuit detection for battery pack using equivalent parameter and consistency method. Journal of Power Sources, 2015, 294, 272-283.	7.8	191
7	Mechanism, modeling, detection, and prevention of the internal short circuit in lithium-ion batteries: Recent advances and perspectives. Energy Storage Materials, 2021, 35, 470-499.	18.0	169
8	A comparative study of global optimization methods for parameter identification of different equivalent circuit models for Li-ion batteries. Electrochimica Acta, 2019, 295, 1057-1066.	5.2	168
9	Micro-Short-Circuit Diagnosis for Series-Connected Lithium-Ion Battery Packs Using Mean-Difference Model. IEEE Transactions on Industrial Electronics, 2019, 66, 2132-2142.	7.9	167
10	Cell state-of-charge inconsistency estimation for LiFePO4 battery pack in hybrid electric vehicles using mean-difference model. Applied Energy, 2013, 111, 571-580.	10.1	158
11	LiFePO4 battery pack capacity estimation for electric vehicles based on charging cell voltage curve transformation. Journal of Power Sources, 2013, 226, 33-41.	7.8	155
12	Critical review of life cycle assessment of lithium-ion batteries for electric vehicles: A lifespan perspective. ETransportation, 2022, 12, 100169.	14.8	151
13	Lithium ion battery pack power fade fault identification based on Shannon entropy in electric vehicles. Journal of Power Sources, 2013, 223, 136-146.	7.8	146
14	A study on parameter variation effects on battery packs for electric vehicles. Journal of Power Sources, 2017, 364, 242-252.	7.8	136
15	Understanding aging mechanisms in lithium-ion battery packs: From cell capacity loss to pack capacity evolution. Journal of Power Sources, 2015, 278, 287-295.	7.8	124
16	Parameter sensitivity analysis and simplification of equivalent circuit model for the state of charge of lithium-ion batteries. Electrochimica Acta, 2020, 330, 135239.	5.2	107
17	Sorting, regrouping, and echelon utilization of the large-scale retired lithium batteries: A critical review. Renewable and Sustainable Energy Reviews, 2021, 146, 111162.	16.4	106
18	Fault diagnosis and quantitative analysis of micro-short circuits for lithium-ion batteries in battery packs. Journal of Power Sources, 2018, 395, 358-368.	7.8	105

#	Article	IF	CITATIONS
19	On-line equalization for lithium-ion battery packs based on charging cell voltages: Part 1. Equalization based on remaining charging capacity estimation. Journal of Power Sources, 2014, 247, 676-686.	7.8	104
20	Turning waste into wealth: A systematic review on echelon utilization and material recycling of retired lithium-ion batteries. Energy Storage Materials, 2021, 40, 96-123.	18.0	97
21	A rapid screening and regrouping approach based on neural networks for large-scale retired lithium-ion cells in second-use applications. Journal of Cleaner Production, 2019, 213, 776-791.	9.3	94
22	Pseudo-two-dimensional model and impedance diagnosis of micro internal short circuit in lithium-ion cells. Journal of Energy Storage, 2020, 27, 101085.	8.1	93
23	Co-estimation of state of charge and state of power for lithium-ion batteries based on fractional variable-order model. Journal of Cleaner Production, 2020, 255, 120203.	9.3	89
24	Capacity estimation of lithium-ion cells by combining model-based and data-driven methods based on a sequential extended Kalman filter. Energy, 2021, 216, 119233.	8.8	89
25	Model and experiments to investigate thermal runaway characterization of lithium-ion batteries induced by external heating method. Journal of Power Sources, 2021, 504, 230065.	7.8	82
26	Electrical behavior of overdischarge-induced internal short circuit in lithium-ion cells. Electrochimica Acta, 2018, 278, 245-254.	5.2	80
27	A novel capacity estimation method for lithium-ion batteries using fusion estimation of charging curve sections and discrete Arrhenius aging model. Applied Energy, 2019, 251, 113327.	10.1	74
28	Battery life estimation based on cloud data for electric vehicles. Journal of Power Sources, 2020, 468, 228192.	7.8	67
29	Highâ€Voltage and Highâ€Safety Practical Lithium Batteries with Ethylene Carbonateâ€Free Electrolyte. Advanced Energy Materials, 2021, 11, 2102299.	19.5	59
30	A simplification of the time-domain equivalent circuit model for lithium-ion batteries based on low-frequency electrochemical impedance spectra. Journal of Power Sources, 2021, 489, 229505.	7.8	55
31	A hybrid state-of-charge estimation method based on credible increment for electric vehicle applications with large sensor and model errors. Journal of Energy Storage, 2020, 27, 101106.	8.1	54
32	On-line equalization for lithium-ion battery packs based on charging cell voltages: Part 2. Fuzzy logic equalization. Journal of Power Sources, 2014, 247, 460-466.	7.8	53
33	Real-time diagnosis of micro-short circuit for Li-ion batteries utilizing low-pass filters. Energy, 2019, 166, 1013-1024.	8.8	53
34	Online detection of early stage internal short circuits in series-connected lithium-ion battery packs based on state-of-charge correlation. Journal of Energy Storage, 2020, 30, 101514.	8.1	53
35	Investigation of thermal runaway propagation characteristics of lithium-ion battery modules under different trigger modes. International Journal of Heat and Mass Transfer, 2021, 171, 121080.	4.8	50
36	A novel capacity estimation method based on charging curve sections for lithium-ion batteries in electric vehicles. Energy, 2019, 185, 361-371.	8.8	47

#	Article	IF	CITATIONS
37	A Comparative Study of Charging Voltage Curve Analysis and State of Health Estimation of Lithium-ion Batteries in Electric Vehicle. Automotive Innovation, 2019, 2, 263-275.	5.1	47
38	Study on the correlation between state of charge and coulombic efficiency for commercial lithium ion batteries. Journal of Power Sources, 2015, 289, 81-90.	7.8	45
39	Online quantitative diagnosis of internal short circuit for lithium-ion batteries using incremental capacity method. Energy, 2022, 243, 123082.	8.8	45
40	Rapid Sorting and Regrouping of Retired Lithium-Ion Battery Modules for Echelon Utilization Based on Partial Charging Curves. IEEE Transactions on Vehicular Technology, 2021, 70, 1246-1254.	6.3	44
41	Micro-Short-Circuit Cell Fault Identification Method for Lithium-Ion Battery Packs Based on Mutual Information. IEEE Transactions on Industrial Electronics, 2021, 68, 4373-4381.	7.9	43
42	Massive battery pack data compression and reconstruction using a frequency division model in battery management systems. Journal of Energy Storage, 2020, 28, 101252.	8.1	42
43	Modeling the inhomogeneous lithium plating in lithium-ion batteries induced by non-uniform temperature distribution. Electrochimica Acta, 2022, 425, 140701.	5.2	42
44	A novel method for state of energy estimation of lithium-ion batteries using particle filter and extended Kalman filter. Journal of Energy Storage, 2021, 43, 103269.	8.1	40
45	Heating power and heating energy effect on the thermal runaway propagation characteristics of lithium-ion battery module: Experiments and modeling. Applied Energy, 2022, 312, 118760.	10.1	40
46	A method of cell-to-cell variation evaluation for battery packs in electric vehicles with charging cloud data. ETransportation, 2020, 6, 100077.	14.8	37
47	Toward safe carbon–neutral transportation: Battery internal short circuit diagnosis based on cloud data for electric vehicles. Applied Energy, 2022, 317, 119168.	10.1	37
48	A capacity prediction framework for lithium-ion batteries using fusion prediction of empirical model and data-driven method. Energy, 2021, 237, 121556.	8.8	34
49	In-depth investigation of the exothermic reactions between lithiated graphite and electrolyte in lithium-ion battery. Journal of Energy Chemistry, 2022, 69, 593-600.	12.9	34
50	Foreign matter defect battery and sudden spontaneous combustion. ETransportation, 2022, 12, 100170.	14.8	34
51	Soft clustering of retired lithium-ion batteries for the secondary utilization using Gaussian mixture model based on electrochemical impedance spectroscopy. Journal of Cleaner Production, 2022, 339, 130786.	9.3	31
52	An accurate parameters extraction method for a novel on-board battery model considering electrochemical properties. Journal of Energy Storage, 2019, 24, 100745.	8.1	30
53	A study of external surface pressure effects on the properties for lithiumâ€ion pouch cells. International Journal of Energy Research, 2020, 44, 6778-6791.	4.5	30
54	Recording frequency optimization for massive battery data storage in battery management systems. Applied Energy, 2016, 183, 380-389.	10.1	29

#	Article	IF	CITATIONS
55	A novel classification method of commercial lithium-ion battery cells based on fast and economic detection of self-discharge rate. Journal of Power Sources, 2020, 478, 229039.	7.8	29
56	A sequential capacity estimation for the lithium-ion batteries combining incremental capacity curve and discrete Arrhenius fading model. Journal of Power Sources, 2021, 484, 229248.	7.8	28
57	A Fuzzy State-of-Charge Estimation Algorithm Combining Ampere-Hour and an Extended Kalman Filter for Li-Ion Batteries Based on Multi-Model Global Identification. Applied Sciences (Switzerland), 2018, 8, 2028.	2.5	27
58	Fault Identification and Quantitative Diagnosis Method for Series-Connected Lithium-Ion Battery Packs Based on Capacity Estimation. IEEE Transactions on Industrial Electronics, 2022, 69, 3059-3067.	7.9	27
59	Global parametric sensitivity analysis of equivalent circuit model based on Sobol' method for lithium-ion batteries in electric vehicles. Journal of Cleaner Production, 2021, 294, 126246.	9.3	26
60	A State of Charge Estimator Based Extended Kalman Filter Using an Electrochemistry-Based Equivalent Circuit Model for Lithium-Ion Batteries. Applied Sciences (Switzerland), 2018, 8, 1592.	2.5	25
61	Signal synchronization for massive data storage in modular battery management system with controller area network. Applied Energy, 2017, 197, 52-62.	10.1	24
62	A Novel Screening Method Based on a Partially Discharging Curve Using a Genetic Algorithm and Back-Propagation Model for the Cascade Utilization of Retired Lithium-Ion Batteries. Electronics (Switzerland), 2018, 7, 399.	3.1	23
63	A vehicle-cloud collaborative method for multi-type fault diagnosis of lithium-ion batteries. FTransportation, 2022, 12, 100172. A rapid classification method of the retired LiCo <mml:math< td=""><td>14.8</td><td>23</td></mml:math<>	14.8	23
64	xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" id="d1e1182" altimg="si1.svg"> <mml:msub><mml:mrow></mml:mrow><mml:mrow><mml:mi mathvariant="normal">x</mml:mi </mml:mrow></mml:msub> Ni <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" id="d1e1190"</mml:math 	5.1	22
65	altimg="si2.svg"> <mml:msub><mml:mrow></mml:mrow><mml:mrow><mml:mi mathvariant="normal">v<!--<br-->Determination of the battery pack capacity considering the estimation error using a Capacity–Quantity diagram. Applied Energy, 2016, 177, 384-392.</mml:mi </mml:mrow></mml:msub>	10.1	21
66	An All-Region State-of-Charge Estimator Based on Global Particle Swarm Optimization and Improved Extended Kalman Filter for Lithium-Ion Batteries. Electronics (Switzerland), 2018, 7, 321.	3.1	19
67	Sequent extended Kalman filter capacity estimation method for lithium-ion batteries based on discrete battery aging model and support vector machine. Journal of Energy Storage, 2021, 39, 102594.	8.1	19
68	A cloud-edge collaborative strategy for capacity prognostic of lithium-ion batteries based on dynamic weight allocation and machine learning. Energy, 2022, 239, 122185.	8.8	19
69	Lithium-ion battery capacity estimation based on open circuit voltage identification using the iteratively reweighted least squares at different aging levels. Journal of Energy Storage, 2021, 44, 103487.	8.1	19
70	A fast capacity estimation method based on open circuit voltage estimation for LiNixCoyMn1-x-y battery assessing in electric vehicles. Journal of Energy Storage, 2020, 32, 101830.	8.1	18
71	Online internal short circuit detection method considering equalization electric quantity for lithiumâ€ion battery pack in electric vehicles. International Journal of Energy Research, 2021, 45, 7326-7340.	4.5	17
72	Lithiumâ€platingâ€free fast charging of largeâ€format lithiumâ€ion batteries with reference electrodes. International Journal of Energy Research, 2021, 45, 7918-7932.	4.5	17

#	Article	IF	CITATIONS
73	Dimensionless normalized concentration based thermal-electric regression model for the thermal runaway of lithium-ion batteries. Journal of Power Sources, 2022, 521, 230958.	7.8	17
74	An Exact Closed-Form Impedance Model for Porous-Electrode Lithium-Ion Cells. Journal of the Electrochemical Society, 2020, 167, 013539.	2.9	15
75	A Simulation Study on Parameter Variation Effects in Battery Packs for Electric Vehicles. Energy Procedia, 2017, 105, 4470-4475.	1.8	12
76	Quantitative short circuit identification for single lithium-ion cell applications based on charge and discharge capacity estimation. Journal of Power Sources, 2022, 517, 230716.	7.8	12
77	Liquid cooling system optimization for a cellâ€ŧoâ€pack battery module under fast charging. International Journal of Energy Research, 2022, 46, 12241-12253.	4.5	12
78	A Novel Composite Equalizer Based on an Additional Cell for Series-Connected Lithium-Ion Cells. Electronics (Switzerland), 2018, 7, 366.	3.1	11
79	A study on halfâ€cell equivalent circuit model of lithiumâ€ion battery based on reference electrode. International Journal of Energy Research, 2021, 45, 4155-4169.	4.5	10
80	A Novel Capacity Estimation Approach for Lithium-Ion Batteries Combining Three-Parameter Capacity Fade Model With Constant Current Charging Curves. IEEE Transactions on Energy Conversion, 2021, 36, 2574-2584.	5.2	9
81	Remaining useful life prediction with probability distribution for lithium-ion batteries based on edge and cloud collaborative computation. Journal of Energy Storage, 2021, 44, 103342.	8.1	7
82	A <scp>multiâ€module</scp> equalization system for <scp>lithiumâ€ion</scp> battery packs. International Journal of Energy Research, 2022, 46, 2771-2782.	4.5	7
83	A novel fast estimation and regroup method of retired lithiumâ€ion battery cells. International Journal of Energy Research, 2020, 44, 11985-11997.	4.5	4
84	Experimental investigation of stateâ€ofâ€power measurement for lithiumâ€ion batteries. International Journal of Energy Research, 2021, 45, 7549-7560.	4.5	3
85	An expeditious and simple scheme for measuring selfâ€discharge rate of lithium batteries. International Journal of Energy Research, 0, , .	4.5	1
86	Dual Closed-Loops Capacity Evolution Prediction for Energy Storage Batteries Integrated with Coupled Electrochemical Model. World Electric Vehicle Journal, 2021, 12, 109.	3.0	0