List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5439281/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Leaf functional traits and monodominance in Southern Amazonia tropical forests. Plant Ecology, 2022, 223, 185-200.	1.6	7
2	Climate defined but not soil-restricted: the distribution of a Neotropical tree through space and time. Plant and Soil, 2022, 471, 175-191.	3.7	0
3	Distinct leaf water potential regulation of tree species and vegetation types across the Cerradoâ \in Amazonia transition. Biotropica, 2022, 54, 431-443.	1.6	6
4	Functional susceptibility of tropical forests to climate change. Nature Ecology and Evolution, 2022, 6, 878-889.	7.8	8
5	Photosynthetic quantum efficiency in <scp>southâ€eastern</scp> Amazonian trees may be already affected by climate change. Plant, Cell and Environment, 2021, 44, 2428-2439.	5.7	22
6	Pantropical modelling of canopy functional traits using Sentinel-2 remote sensing data. Remote Sensing of Environment, 2021, 252, 112122.	11.0	38
7	Pantropical variability in tree crown allometry. Global Ecology and Biogeography, 2021, 30, 459-475.	5.8	27
8	Trees at the Amazonia-Cerrado transition are approaching high temperature thresholds. Environmental Research Letters, 2021, 16, 034047.	5.2	19
9	Taking the pulse of Earth's tropical forests using networks of highly distributed plots. Biological Conservation, 2021, 260, 108849.	4.1	71
10	Fire and drought: Shifts in bark investment across a broad geographical scale for Neotropical savanna trees. Basic and Applied Ecology, 2021, 56, 110-121.	2.7	5
11	Functional diversity and regeneration traits of tree communities in the Amazon-Cerrado transition. Flora: Morphology, Distribution, Functional Ecology of Plants, 2021, 285, 151952.	1.2	4
12	Redefining the Cerrado–Amazonia transition: implications for conservation. Biodiversity and Conservation, 2020, 29, 1501-1517.	2.6	65
13	Tree diversity and above-ground biomass in the South America Cerrado biome and their conservation implications. Biodiversity and Conservation, 2020, 29, 1519-1536.	2.6	36
14	Soil water-holding capacity and monodominance in Southern Amazon tropical forests. Plant and Soil, 2020, 450, 65-79.	3.7	12
15	Diversity of functional tradeâ€offs enhances survival after fire in Neotropical savanna species. Journal of Vegetation Science, 2020, 31, 139-150.	2.2	21
16	Tree mode of death and mortality risk factors across Amazon forests. Nature Communications, 2020, 11, 5515.	12.8	62
17	The Influence of Ecosystem and Phylogeny on Tropical Tree Crown Size and Shape. Frontiers in Forests and Global Change, 2020, 3, .	2.3	19
18	Legacy of Amazonian Dark Earth soils on forest structure and species composition. Global Ecology and Biogeography, 2020, 29, 1458-1473.	5.8	28

#	Article	IF	CITATIONS
19	Drought generates large, long-term changes in tree and liana regeneration in a monodominant Amazon forest. Plant Ecology, 2020, 221, 733-747.	1.6	10
20	Biased-corrected richness estimates for the Amazonian tree flora. Scientific Reports, 2020, 10, 10130.	3.3	53
21	The Influence of Taxonomy and Environment on Leaf Trait Variation Along Tropical Abiotic Gradients. Frontiers in Forests and Global Change, 2020, 3, .	2.3	19
22	Causes and consequences of liana infestation in southern Amazonia. Journal of Ecology, 2020, 108, 2184-2197.	4.0	13
23	Fire Effects on Understory Forest Regeneration in Southern Amazonia. Frontiers in Forests and Global Change, 2020, 3, .	2.3	23
24	Publishing in English is associated with an increase of the impact factor of Brazilian biodiversity journals. Anais Da Academia Brasileira De Ciencias, 2020, 92, e20181263.	0.8	3
25	Evolutionary diversity is associated with wood productivity in Amazonian forests. Nature Ecology and Evolution, 2019, 3, 1754-1761.	7.8	32
26	Impacts of Fire on Forest Biomass Dynamics at the Southern Amazon Edge. Environmental Conservation, 2019, 46, 285-292.	1.3	18
27	Soil and topographic variation as a key factor driving the distribution of tree flora in the Amazonia/Cerrado transition. Acta Oecologica, 2019, 100, 103467.	1.1	15
28	Rarity of monodominance in hyperdiverse Amazonian forests. Scientific Reports, 2019, 9, 13822.	3.3	28
29	Compositional response of Amazon forests to climate change. Global Change Biology, 2019, 25, 39-56.	9.5	265
30	Mapping tropical disturbed forests using multi-decadal 30†m optical satellite imagery. Remote Sensing of Environment, 2019, 221, 474-488.	11.0	52
31	Collapse of ecosystem carbon stocks due to forest conversion to soybean plantations at the Amazon-Cerrado transition. Forest Ecology and Management, 2018, 414, 64-73.	3.2	35
32	Climate and fragmentation affect forest structure at the southern border of Amazonia. Plant Ecology and Diversity, 2018, 11, 13-25.	2.4	12
33	Assessing the effects of rainfall reduction on litterfall and the litter layer in phytophysiognomies of the Amazonia–Cerrado transition. Revista Brasileira De Botanica, 2018, 41, 589-600.	1.3	4
34	Recurrent wildfires drive rapid taxonomic homogenization of seasonally flooded Neotropical forests. Environmental Conservation, 2018, 45, 378-386.	1.3	10
35	Leaf-level photosynthetic capacity dynamics in relation to soil and foliar nutrients along forest–savanna boundaries in Ghana and Brazil. Tree Physiology, 2018, 38, 1912-1925.	3.1	23
36	Panâ€ŧropical prediction of forest structure from the largest trees. Global Ecology and Biogeography, 2018, 27, 1366-1383.	5.8	78

#	Article	IF	CITATIONS
37	Savanna turning into forest: concerted vegetation change at the ecotone between the Amazon and "Cerrado―biomes. Revista Brasileira De Botanica, 2018, 41, 611-619.	1.3	19
38	Influence of climate variability, fire and phosphorus limitation on vegetation structure and dynamics of the Amazon–Cerrado border. Biogeosciences, 2018, 15, 919-936.	3.3	14
39	Idiosyncratic soil-tree species associations and their relationships with drought in a monodominant Amazon forest. Acta Oecologica, 2018, 91, 127-136.	1.1	5
40	Charcoal chronology of the Amazon forest: A record of biodiversity preserved by ancient fires. Quaternary Geochronology, 2017, 41, 180-186.	1.4	14
41	Resistance to fire and the resilience of the woody vegetation of the "Cerradão―in the "Cerradoâ€â€"Amazon transition zone. Revista Brasileira De Botanica, 2017, 40, 193-201.	1.3	9
42	Unravelling ecosystem functions at the Amazonia-Cerrado transition: II. Carbon stocks and CO 2 soil efflux in cerradão forest undergoing ecological succession. Acta Oecologica, 2017, 82, 23-31.	1.1	7
43	Amazon Basin forest pyrogenic carbon stocks: First estimate of deep storage. Geoderma, 2017, 306, 237-243.	5.1	29
44	Unraveling the ecosystem functions in the Amazonia–Cerrado transition: evidence of hyperdynamic nutrient cycling. Plant Ecology, 2017, 218, 225-239.	1.6	20
45	Biochar no manejo de nitrogênio e fÃ3sforo para a produção de mudas de angico. Pesquisa Agropecuaria Brasileira, 2016, 51, 120-131.	0.9	5
46	Patterns of tree species composition at watershed-scale in the Amazon â€~arc of deforestation': implications for conservation. Environmental Conservation, 2016, 43, 317-326.	1.3	14
47	Examining variation in the leaf mass per area of dominant species across two contrasting tropical gradients in light of community assembly. Ecology and Evolution, 2016, 6, 5674-5689.	1.9	26
48	Survival and growth of native Tachigali vulgaris and exotic Eucalyptus urophylla×Eucalyptus grandis trees in degraded soils with biochar amendment in southern Amazonia. Forest Ecology and Management, 2016, 368, 173-182.	3.2	26
49	Impact of biochar on nitrous oxide emissions from upland rice. Journal of Environmental Management, 2016, 169, 27-33.	7.8	26
50	Biomass hyperdynamics as a key modulator of forest self-maintenance in a dystrophic soil in the Amazonia-Cerrado transition. Scientia Forestalis/Forest Sciences, 2016, 44, .	0.2	6
51	Germinação das sementes e desenvolvimento de mudas de Magonia pubescens A.StHil. (Sapindaceae) sob diferentes intensidades de sombreamento. Scientia Forestalis/Forest Sciences, 2016, 44, .	0.2	0
52	Phylogenetic diversity of Amazonian tree communities. Diversity and Distributions, 2015, 21, 1295-1307.	4.1	72
53	Ecology of Floodplain <i>Campos de Murundus</i> Savanna in Southern Amazonia. International Journal of Plant Sciences, 2015, 176, 670-681.	1.3	16
54	Post-fire dynamics of the woody vegetation of a savanna forest (Cerradão) in the Cerrado-Amazon transition zone. Acta Botanica Brasilica, 2015, 29, 408-416.	0.8	16

#	Article	IF	CITATIONS
55	Early recruitment responses to interactions between frequent fires, nutrients, and herbivory in the southern Amazon. Oecologia, 2015, 178, 807-817.	2.0	14
56	Diversity, floristic composition, and structure of the woody vegetation of the Cerrado in the Cerrado–Amazon transition zone in Mato Grosso, Brazil. Revista Brasileira De Botanica, 2015, 38, 877-887.	1.3	20
57	Rainfall and deforestation in the municipality of ColÃder, southern Amazon. Revista Brasileira De Meteorologia, 2014, 29, 483-493.	0.5	10
58	Markedly divergent estimates of <scp>A</scp> mazon forest carbon density from ground plots and satellites. Global Ecology and Biogeography, 2014, 23, 935-946.	5.8	248
59	Disequilibrium and hyperdynamic tree turnover at the forest–cerrado transition zone in southern Amazonia. Plant Ecology and Diversity, 2014, 7, 281-292.	2.4	97
60	Diversity, abundance and distribution of lianas of the Cerrado–Amazonian forest transition, Brazil. Plant Ecology and Diversity, 2014, 7, 231-240.	2.4	9
61	Post-fire recovery of savanna vegetation from rocky outcrops. Flora: Morphology, Distribution, Functional Ecology of Plants, 2014, 209, 201-208.	1.2	29
62	Fast demographic traits promote high diversification rates of Amazonian trees. Ecology Letters, 2014, 17, 527-536.	6.4	63
63	Post-fire dynamics of woody vegetation in seasonally flooded forests (impucas) in the Cerrado-Amazonian Forest transition zone. Flora: Morphology, Distribution, Functional Ecology of Plants, 2014, 209, 260-270.	1.2	15
64	On the delineation of tropical vegetation types with an emphasis on forest/savanna transitions. Plant Ecology and Diversity, 2013, 6, 101-137.	2.4	105
65	Biochar as substitute for organic matter in the composition of substrates for seedlings - doi: 10.4025/actasciagron.v35i3.17542. Acta Scientiarum - Agronomy, 2013, 35, .	0.6	3
66	Monodominance in a forest of Brosimum rubescens Taub. (Moraceae): Structure and dynamics of natural regeneration. Acta Oecologica, 2012, 43, 134-139.	1.1	15
67	FlorÃstica dos campos de murundus do Pantanal do Araguaia, Mato Grosso, Brasil. Acta Botanica Brasilica, 2012, 26, 181-196.	0.8	28
68	Dinâmica da comunidade lenhosa de uma floresta de galeria na transição Cerrado-Floresta Amazônica no Leste de Mato Grosso, em um perÃodo de sete anos (1999 a 2006). Biota Neotropica, 2011, 11, 53-61.	1.0	16
69	Dinâmica da comunidade lenhosa de um Cerrado TÃpico na região Nordeste do Estado de Mato Grosso, Brasil. Biota Neotropica, 2011, 11, 73-82.	1.0	33
70	Changes in the structure of a savanna forest over a six-year period in the Amazon-Cerrado transition, Mato Grosso state, Brazil. Rodriguesia, 2011, 62, 425-436.	0.9	19
71	Environmental determinants for natural regeneration of gallery forest at the Cerrado/Amazonia boundaries in Brazil. Acta Amazonica, 2010, 40, 107-118.	0.7	40
72	A new instrument for measurement and collection of quantitative samples of the litter layer in forests. Forest Ecology and Management, 2008, 255, 2244-2250.	3.2	19

#	Article	IF	CITATIONS
73	Desenvolvimento inicial e partição de biomassa de Brosimum rubescens Taub. (Moraceae) sob diferentes nÃveis de sombreamento. Acta Botanica Brasilica, 2008, 22, 941-953.	0.8	19
74	Comparação da vegetação arbórea e caracterÃsticas edáficas de um cerradão e um cerrado sensu stricto em áreas adjacentes sobre solo distrófico no leste de Mato Grosso, Brasil. Acta Botanica Brasilica, 2005, 19, 913-926.	0.8	135