
Yulia I Svenskaya

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5439126/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Optical clearing of tissues: Issues of antimicrobial phototherapy and drug delivery. Advanced Drug Delivery Reviews, 2022, 180, 114037.	13.7	19
2	CaCO ₃ -based carriers with prolonged release properties for antifungal drug delivery to hair follicles. Biomaterials Science, 2022, 10, 3323-3345.	5.4	5
3	Micro/Nanosystems for Magnetic Targeted Delivery of Bioagents. Pharmaceutics, 2022, 14, 1132.	4.5	15
4	Transdermal platform for the delivery of the antifungal drug naftifine hydrochloride based on porous vaterite particles. Materials Science and Engineering C, 2021, 119, 111428.	7.3	26
5	Biodegradable polyelectrolyte/magnetite capsules for MR imaging and magnetic targeting of tumors. Nanotheranostics, 2021, 5, 362-377.	5.2	17
6	Sonophoretic acceleration of degradation process for vaterite particles delivered into the hair follicles. Izvestiya of Saratov University, New Series: Physics, 2021, 21, 80-85.	0.1	3
7	Key Points in Remote-Controlled Drug Delivery: From the Carrier Design to Clinical Trials. International Journal of Molecular Sciences, 2021, 22, 9149.	4.1	5
8	Dark cytotoxicity of submicrometer vaterite particles loaded with photosensitizer Fotoditazin and the vaterite-based core – shells structures. Reviews on Clinical Pharmacology and Drug Therapy, 2021, 19, 333-338.	0.6	1
9	Spectroscopic Study of the Release Kinetics of Water-Insoluble Drug Griseofulvin from Vaterite Containers in Aqueous Medium. Optics and Spectroscopy (English Translation of Optika I) Tj ETQq1 1 0.78431	4 rgðī6/Ov	erloæk 10 Tf 5
10	Enhanced topical psoralen–ultraviolet A therapy via targeting to hair follicles. British Journal of Dermatology, 2020, 182, 1479-1481.	1.5	17
11	Prospective Nanotechnology-Based Strategies for Enhanced Intra- and Transdermal Delivery of Antifungal Drugs. Skin Pharmacology and Physiology, 2020, 33, 261-269.	2.5	17
12	Hybrid functional materials for tissue engineering: synthesis, in vivo drug release and SERS effect. Journal of Physics: Conference Series, 2020, 1461, 012150.	0.4	3
13	Enhancement of Biomimetic Enzymatic Mineralization of Gellan Gum Polysaccharide Hydrogels by Plant-Derived Gallotannins. International Journal of Molecular Sciences, 2020, 21, 2315.	4.1	12
14	Mesoporous particles for transdermal delivery of the antifungal drug griseofulvin. Journal of Physics: Conference Series, 2020, 1461, 012083.	0.4	2
15	Optimized skin optical clearing for optical coherence tomography monitoring of encapsulated drug delivery through the hair follicles. Journal of Biophotonics, 2020, 13, e201960020.	2.3	16
16	Magnetic Composite Submicron Carriers with Structure-Dependent MRI Contrast. Inorganics, 2020, 8, 11.	2.7	18
17	Cellular Uptake Study of Antimycotic-Loaded Carriers Using Imaging Flow Cytometry and Confocal Laser Scanning Microscopy. Optics and Spectroscopy (English Translation of Optika I Spektroskopiya), 2020, 128, 799-808.	0.6	6
18	Spectral Monitoring of Naftifine Immobilization into Submicron Vaterite Particles. Optics and Spectroscopy (English Translation of Optika I Spektroskopiya), 2019, 126, 539-544.	0.6	7

YULIA I SVENSKAYA

#	Article	IF	CITATIONS
19	Mesoporous carriers for transdermal delivery of antifungal drug. Materials Letters, 2019, 248, 211-213.	2.6	18
20	A Simple Non-Invasive Approach toward Efficient Transdermal Drug Delivery Based on Biodegradable Particulate System. ACS Applied Materials & Interfaces, 2019, 11, 17270-17282.	8.0	51
21	Targeted photosensitizer delivery: A prospective approach to vitiligo photochemotherapy. Vestnik Dermatologii I Venerologii, 2019, 95, 21-29.	0.6	7
22	Key Parameters for Size- and Shape-Controlled Synthesis of Vaterite Particles. Crystal Growth and Design, 2018, 18, 331-337.	3.0	79
23	Optical monitoring of adipose tissue destruction under encapsulated lipase action. Journal of Biophotonics, 2018, 11, e201800058.	2.3	10
24	Morphology alterations of skin and subcutaneous fat at NIR laser irradiation combined with delivery of encapsulated indocyanine green. Journal of Biomedical Optics, 2017, 22, 055008.	2.6	8
25	In vivo optical monitoring of transcutaneous delivery of calcium carbonate microcontainers. Biomedical Optics Express, 2016, 7, 2082.	2.9	36
26	Photodynamic therapy platform based on localized delivery of photosensitizer by vaterite submicron particles. Colloids and Surfaces B: Biointerfaces, 2016, 146, 171-179.	5.0	73
27	Ultrasonically assisted fabrication of vaterite submicron-sized carriers. Advanced Powder Technology, 2016, 27, 618-624.	4.1	42
28	Layer-by-Layer Growth of Charged Polymers and Silicon Nanoparticles. BioNanoScience, 2016, 6, 147-152.	3.5	3
29	Point-wise laser effect on NIH/3T3 cells impregnated with photosensitizer-loaded porous calcium carbonate microparticles. , 2015, , .		7
30	Histological study of subcutaneous fat at NIR laser treatment of the rat skin <i>in vivo</i> . Proceedings of SPIE, 2015, , .	0.8	0
31	Size controlled hydroxyapatite and calcium carbonate particles: Synthesis and their application as templates for SERS platform. Colloids and Surfaces B: Biointerfaces, 2014, 118, 243-248.	5.0	45
32	Calcium carbonate microparticles containing a photosensitizer photosens: Preparation, ultrasound stimulated dye release, and in vivo application. Nanotechnologies in Russia, 2014, 9, 398-409.	0.7	14
33	Anticancer drug delivery system based on calcium carbonate particles loaded with a photosensitizer. Biophysical Chemistry, 2013, 182, 11-15.	2.8	151
34	Effect of bacterial lectin on acceleration of fat cell lipolysis at in vitro diode laser treatment using encapsulated ICG. , 2012, , .		2
35	Liquid crystal-in-water emulsion stabilized by layer-by-layer adsorption of polyelectrolytes and magnetite nanoparticles. Technical Physics Letters, 2010, 36, 88-91.	0.7	4