Yulia I Svenskaya

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5439126/publications.pdf

Version: 2024-02-01

623734 526287 35 743 14 27 citations g-index h-index papers 35 35 35 757 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Anticancer drug delivery system based on calcium carbonate particles loaded with a photosensitizer. Biophysical Chemistry, 2013, 182, 11-15.	2.8	151
2	Key Parameters for Size- and Shape-Controlled Synthesis of Vaterite Particles. Crystal Growth and Design, 2018, 18, 331-337.	3.0	79
3	Photodynamic therapy platform based on localized delivery of photosensitizer by vaterite submicron particles. Colloids and Surfaces B: Biointerfaces, 2016, 146, 171-179.	5.0	73
4	A Simple Non-Invasive Approach toward Efficient Transdermal Drug Delivery Based on Biodegradable Particulate System. ACS Applied Materials & Samp; Interfaces, 2019, 11, 17270-17282.	8.0	51
5	Size controlled hydroxyapatite and calcium carbonate particles: Synthesis and their application as templates for SERS platform. Colloids and Surfaces B: Biointerfaces, 2014, 118, 243-248.	5.0	45
6	Ultrasonically assisted fabrication of vaterite submicron-sized carriers. Advanced Powder Technology, 2016, 27, 618-624.	4.1	42
7	In vivo optical monitoring of transcutaneous delivery of calcium carbonate microcontainers. Biomedical Optics Express, 2016, 7, 2082.	2.9	36
8	Transdermal platform for the delivery of the antifungal drug naftifine hydrochloride based on porous vaterite particles. Materials Science and Engineering C, 2021, 119, 111428.	7.3	26
9	Optical clearing of tissues: Issues of antimicrobial phototherapy and drug delivery. Advanced Drug Delivery Reviews, 2022, 180, 114037.	13.7	19
10	Mesoporous carriers for transdermal delivery of antifungal drug. Materials Letters, 2019, 248, 211-213.	2.6	18
11	Magnetic Composite Submicron Carriers with Structure-Dependent MRI Contrast. Inorganics, 2020, 8, 11.	2.7	18
12	Enhanced topical psoralen–ultraviolet A therapy via targeting to hair follicles. British Journal of Dermatology, 2020, 182, 1479-1481.	1.5	17
13	Prospective Nanotechnology-Based Strategies for Enhanced Intra- and Transdermal Delivery of Antifungal Drugs. Skin Pharmacology and Physiology, 2020, 33, 261-269.	2.5	17
14	Biodegradable polyelectrolyte/magnetite capsules for MR imaging and magnetic targeting of tumors. Nanotheranostics, 2021, 5, 362-377.	5.2	17
15	Optimized skin optical clearing for optical coherence tomography monitoring of encapsulated drug delivery through the hair follicles. Journal of Biophotonics, 2020, 13, e201960020.	2.3	16
16	Micro/Nanosystems for Magnetic Targeted Delivery of Bioagents. Pharmaceutics, 2022, 14, 1132.	4.5	15
17	Calcium carbonate microparticles containing a photosensitizer photosens: Preparation, ultrasound stimulated dye release, and in vivo application. Nanotechnologies in Russia, 2014, 9, 398-409.	0.7	14
18	Enhancement of Biomimetic Enzymatic Mineralization of Gellan Gum Polysaccharide Hydrogels by Plant-Derived Gallotannins. International Journal of Molecular Sciences, 2020, 21, 2315.	4.1	12

#	Article	IF	CITATIONS
19	Optical monitoring of adipose tissue destruction under encapsulated lipase action. Journal of Biophotonics, 2018, 11, e201800058.	2.3	10
20	Morphology alterations of skin and subcutaneous fat at NIR laser irradiation combined with delivery of encapsulated indocyanine green. Journal of Biomedical Optics, 2017, 22, 055008.	2.6	8
21	Point-wise laser effect on NIH/3T3 cells impregnated with photosensitizer-loaded porous calcium carbonate microparticles. , 2015, , .		7
22	Spectral Monitoring of Naftifine Immobilization into Submicron Vaterite Particles. Optics and Spectroscopy (English Translation of Optika I Spektroskopiya), 2019, 126, 539-544.	0.6	7
23	Targeted photosensitizer delivery: A prospective approach to vitiligo photochemotherapy. Vestnik Dermatologii I Venerologii, 2019, 95, 21-29.	0.6	7
24	Cellular Uptake Study of Antimycotic-Loaded Carriers Using Imaging Flow Cytometry and Confocal Laser Scanning Microscopy. Optics and Spectroscopy (English Translation of Optika I Spektroskopiya), 2020, 128, 799-808.	0.6	6
25	Key Points in Remote-Controlled Drug Delivery: From the Carrier Design to Clinical Trials. International Journal of Molecular Sciences, 2021, 22, 9149.	4.1	5
26	CaCO ₃ -based carriers with prolonged release properties for antifungal drug delivery to hair follicles. Biomaterials Science, 2022, 10, 3323-3345.	5.4	5
27	Liquid crystal-in-water emulsion stabilized by layer-by-layer adsorption of polyelectrolytes and magnetite nanoparticles. Technical Physics Letters, 2010, 36, 88-91.	0.7	4
28	Spectroscopic Study of the Release Kinetics of Water-Insoluble Drug Griseofulvin from Vaterite Containers in Aqueous Medium. Optics and Spectroscopy (English Translation of Optika I) Tj ETQq0 0 0 rgBT /C	Overlouck 10) Tf 4 0 377 Td
29	Layer-by-Layer Growth of Charged Polymers and Silicon Nanoparticles. BioNanoScience, 2016, 6, 147-152.	3.5	3
30	Hybrid functional materials for tissue engineering: synthesis, in vivo drug release and SERS effect. Journal of Physics: Conference Series, 2020, 1461, 012150.	0.4	3
31	Sonophoretic acceleration of degradation process for vaterite particles delivered into the hair follicles. Izvestiya of Saratov University, New Series: Physics, 2021, 21, 80-85.	0.1	3
32	Effect of bacterial lectin on acceleration of fat cell lipolysis at in vitro diode laser treatment using encapsulated ICG. , 2012, , .		2
33	Mesoporous particles for transdermal delivery of the antifungal drug griseofulvin. Journal of Physics: Conference Series, 2020, 1461, 012083.	0.4	2
34	Dark cytotoxicity of submicrometer vaterite particles loaded with photosensitizer Fotoditazin and the vaterite-based core – shells structures. Reviews on Clinical Pharmacology and Drug Therapy, 2021, 19, 333-338.	0.6	1
35	Histological study of subcutaneous fat at NIR laser treatment of the rat skin <i>in vivo</i> . Proceedings of SPIE, 2015, , .	0.8	0