Jack Satsangi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5438474/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Risk Prediction and Comparative Efficacy of Anti-TNF vs Thiopurines, for Preventing Postoperative Recurrence in Crohn's Disease: A Pooled Analysis of 6 Trials. Clinical Gastroenterology and Hepatology, 2022, 20, 2741-2752.e6.	2.4	18
2	Mucosal Gene Transcript Signatures in Treatment NaÃ⁻ve Inflammatory Bowel Disease: A Comparative Analysis of Disease to Symptomatic and Healthy Controls in the European IBD-Character Cohort. Clinical and Experimental Gastroenterology, 2022, Volume 15, 5-25.	1.0	5
3	Characterisation of the Circulating Transcriptomic Landscape in Inflammatory Bowel Disease Provides Evidence for Dysregulation of Multiple Transcription Factors Including NFE2, SPI1, CEBPB, and IRF2. Journal of Crohn's and Colitis, 2022, 16, 1255-1268.	0.6	17
4	Probing the Microbiome to Predict Response to Biologic Therapy in Inflammatory Bowel Disease—One Step Closer to Precision Medicine?. Gastroenterology, 2022, , .	0.6	0
5	Combination therapy of infliximab and thiopurines, but not monotherapy with infliximab or vedolizumab, is associated with attenuated IgA and neutralisation responses to SARS-CoV-2 in inflammatory bowel disease. Gut, 2022, 71, 1919.2-1922.	6.1	3
6	Mucosal metabolites fuel the growth and virulence of E. coli linked to Crohn's disease. JCI Insight, 2022, 7, .	2.3	17
7	Observational data from the adalimumab postâ€marketing PYRAMID registry of patients with Crohn's disease who became pregnant: A post hoc analysis. United European Gastroenterology Journal, 2022, 10, 485-495.	1.6	3
8	COVID-19 and Gastrointestinal Disease: Implications for the Gastroenterologist. Digestive Diseases, 2021, 39, 119-139.	0.8	88
9	Therapeutic Decisions in Inflammatory Bowel Disease in the SARS-Cov-2 Pandemic. Gastroenterology, 2021, 160, 1883-1884.	0.6	3
10	Transcription and DNA Methylation Patterns of Blood-Derived CD8+ T Cells Are Associated With Age and Inflammatory Bowel Disease But Do Not Predict Prognosis. Gastroenterology, 2021, 160, 232-244.e7.	0.6	42
11	Predicting Outcome in Acute Severe Colitis—Controversies in Clinical Practice in 2021. Journal of Crohn's and Colitis, 2021, 15, 1211-1221.	0.6	17
12	O66â€Outcome of investigation for suspected malignancy in patients with iron deficiency anaemia without gastrointestinal symptoms. , 2021, , .		0
13	Maintenance therapy with infliximab or vedolizumab in IBD is not associated with increased SARS-CoV-2 seroprevalence: UK experience in the 2020 pandemic. Gut, 2021, 70, 2398-2400.	6.1	9
14	Steering a Course through the COVID-19 Pandemic: Should the SECURE-IBD Registry Influence Prescribing for Patients with Inflammatory Bowel Disease?. Gastroenterology, 2021, 160, 1867-1870.	0.6	2
15	Reply. Gastroenterology, 2021, 160, 2622-2623.	0.6	0
16	Systemic Inflammation in Preclinical Ulcerative Colitis. Gastroenterology, 2021, 161, 1526-1539.e9.	0.6	58
17	Anti–SARS-CoV-2 Antibody Responses in Patients With IBD Treated With Biologics: Are We Finding CLARITY?. Gastroenterology, 2021, 161, 2057-2059.	0.6	2
18	De-escalation of immunomodulator and biological therapy in inflammatory bowel disease. The Lancet Gastroenterology and Hepatology, 2020, 5, 63-79.	3.7	56

#	Article	IF	CITATIONS
19	De-escalation of medical therapy in inflammatory bowel disease. Current Opinion in Pharmacology, 2020, 55, 73-81.	1.7	4
20	Review article: impact of cigarette smoking on intestinal inflammation—direct and indirect mechanisms. Alimentary Pharmacology and Therapeutics, 2020, 51, 1268-1285.	1.9	37
21	Inflammatory Bowel Disease Through the Lens of Single-cell RNA-seq Technologies. Inflammatory Bowel Diseases, 2020, 26, 1658-1668.	0.9	27
22	Age, Inflammation, and Disease Location Are Critical Determinants of Intestinal Expression of SARS-CoV-2 Receptor ACE2 and TMPRSS2 in Inflammatory Bowel Disease. Gastroenterology, 2020, 159, 1151-1154.e2.	0.6	56
23	Review article: withdrawal of 5â€aminosalicylates in inflammatory bowel disease. Alimentary Pharmacology and Therapeutics, 2020, 52, 73-84.	1.9	24
24	Somatic mosaicism and common genetic variation contribute to the risk of very-early-onset inflammatory bowel disease. Nature Communications, 2020, 11, 995.	5.8	37
25	Just Another Flare of Ulcerative Colitis?. Gastroenterology, 2020, 158, e11-e12.	0.6	2
26	Real-world Effectiveness of Tofacitinib for Moderate to Severe Ulcerative Colitis: A Multicentre UK Experience. Journal of Crohn's and Colitis, 2020, 14, 1385-1393.	0.6	74
27	Precision medicine in inflammatory bowel disease: concept, progress and challenges. F1000Research, 2020, 9, 54.	0.8	59
28	Letter: rationalising aminosalicylates in inflammatory bowel disease—authors' reply. Alimentary Pharmacology and Therapeutics, 2020, 52, 1621-1621.	1.9	0
29	Autologous stem cell transplantation in refractory Crohn's disease – low intensity therapy evaluation (ASTIClite): study protocols for a multicentre, randomised controlled trial and observational follow up study. BMC Gastroenterology, 2019, 19, 82.	0.8	17
30	The Inflammatory Bowel Disease Drug Azathioprine Induces Autophagy via mTORC1 and the Unfolded Protein Response Sensor PERK. Inflammatory Bowel Diseases, 2019, 25, 1481-1496.	0.9	17
31	<p>Fecal microbiota profiles in treatment-naïve pediatric inflammatory bowel disease – associations with disease phenotype, treatment, and outcome</p> . Clinical and Experimental Gastroenterology, 2019, Volume 12, 37-49.	1.0	58
32	The type III intermediate filament vimentin regulates organelle distribution and modulates autophagy. PLoS ONE, 2019, 14, e0209665.	1.1	26
33	Blood-based DNA methylation in Crohn's disease and severity of intestinal inflammation. Translational Gastroenterology and Hepatology, 2019, 4, 76-76.	1.5	4
34	Mitochondrial DNA Is a Pro-Inflammatory Damage-Associated Molecular Pattern Released During Active IBD. Inflammatory Bowel Diseases, 2018, 24, 2113-2122.	0.9	87
35	PWE-026â€Endoscopy is superior to stool frequency in predicting response to steroids in acute ulcerative colitis. , 2018, , .		0
36	Purine metabolism controls innate lymphoid cell function and protects against intestinal injury. Immunology and Cell Biology, 2018, 96, 1049-1059.	1.0	30

#	Article	IF	CITATIONS
37	Autologous Haematopoietic Stem Cell Transplantation for Crohn's Disease: A Retrospective Survey of Long-term Outcomes From the European Society for Blood and Marrow Transplantation. Journal of Crohn's and Colitis, 2018, 12, 1097-1103.	0.6	29
38	Mutational Analysis Identifies Therapeutic Biomarkers in Inflammatory Bowel Disease–Associated Colorectal Cancers. Clinical Cancer Research, 2018, 24, 5133-5142.	3.2	26
39	Promoter methylation of the MGAT3 and BACH2 genes correlates with the composition of the immunoglobulin G glycome in inflammatory bowel disease. Clinical Epigenetics, 2018, 10, 75.	1.8	32
40	The role of genetics in Crohn's disease: how could it influence future therapies?. Expert Review of Gastroenterology and Hepatology, 2018, 12, 1075-1077.	1.4	2
41	Open : Lymphoma Risk and Overall Safety Profile of Adalimumab in Patients With Crohn's Disease With up to 6 Years of Follow-up in the PYRAMID Registry. American Journal of Gastroenterology, 2018, 113, 872-882.	0.2	58
42	Shared activity patterns arising at genetic susceptibility loci reveal underlying genomic and cellular architecture of human disease. PLoS Computational Biology, 2018, 14, e1005934.	1.5	17
43	PWE-019â€Day of admission results predict outcome in acute ulcerative colitis. , 2018, , .		0
44	Genome-wide association study identifies distinct genetic contributions to prognosis and susceptibility in Crohn's disease. Nature Genetics, 2017, 49, 262-268.	9.4	250
45	Genome-wide association study implicates immune activation of multiple integrin genes in inflammatory bowel disease. Nature Genetics, 2017, 49, 256-261.	9.4	943
46	Exploring the genetic architecture of inflammatory bowel disease by whole-genome sequencing identifies association at ADCY7. Nature Genetics, 2017, 49, 186-192.	9.4	153
47	A plea for TDM-based optimisation for treatment of Crohn's disease – Authors' reply. The Lancet Gastroenterology and Hepatology, 2017, 2, 81-82.	3.7	0
48	Autologous stem-cell transplantation in treatment-refractory Crohn's disease: an analysis of pooled data from the ASTIC trial. The Lancet Gastroenterology and Hepatology, 2017, 2, 399-406.	3.7	70
49	Fine-mapping inflammatory bowel disease loci to single-variant resolution. Nature, 2017, 547, 173-178.	13.7	473
50	Can Thiopurines Prevent Formation of Antibodies Against Tumor Necrosis Factor Antagonists After Failure of These Therapies?. Clinical Gastroenterology and Hepatology, 2017, 15, 76-78.	2.4	0
51	How to Apply for and Secure EU Funding for Collaborative IBD Research Projects. Journal of Crohn's and Colitis, 2016, 10, 363-370.	0.6	7
52	Serum Calprotectin: A Novel Diagnostic and Prognostic Marker in Inflammatory Bowel Diseases. American Journal of Gastroenterology, 2016, 111, 1796-1805.	0.2	88
53	Copy number variation of scavenger-receptor cysteine-rich domains within DMBT1 and Crohn's disease. European Journal of Human Genetics, 2016, 24, 1294-1300.	1.4	10
54	Mercaptopurine versus placebo to prevent recurrence of Crohn's disease after surgical resection (TOPPIC): a multicentre, double-blind, randomised controlled trial. The Lancet Gastroenterology and Hepatology, 2016, 1, 273-282.	3.7	91

#	Article	IF	CITATIONS
55	Biomarkers in Search of Precision Medicine in IBD. American Journal of Gastroenterology, 2016, 111, 1682-1690.	0.2	45
56	Systematic meta-analyses and field synopsis of genetic and epigenetic studies in paediatric inflammatory bowel disease. Scientific Reports, 2016, 6, 34076.	1.6	12
57	Inherited determinants of Crohn's disease and ulcerative colitis phenotypes: a genetic association study. Lancet, The, 2016, 387, 156-167.	6.3	607
58	Pathogenesis of Crohn's disease. F1000prime Reports, 2015, 7, 44.	5.9	73
59	Autologous Hematopoetic Stem Cell Transplantation for Refractory Crohn Disease. JAMA - Journal of the American Medical Association, 2015, 314, 2524.	3.8	136
60	Pooled Sequencing of 531 Genes in Inflammatory Bowel Disease Identifies an Associated Rare Variant in BTNL2 and Implicates Other Immune Related Genes. PLoS Genetics, 2015, 11, e1004955.	1.5	59
61	Systematic Review of Effects of Withdrawal of Immunomodulators or Biologic Agents From Patients With Inflammatory Bowel Disease. Gastroenterology, 2015, 149, 1716-1730.	0.6	180
62	Genetic sharing and heritability of paediatric age of onset autoimmune diseases. Nature Communications, 2015, 6, 8442.	5.8	58
63	Meta-analysis of shared genetic architecture across ten pediatric autoimmune diseases. Nature Medicine, 2015, 21, 1018-1027.	15.2	212
64	Changes to Serum Sample Tube and Processing Methodology Does Not Cause Inter-Individual Variation in Automated Whole Serum N-Glycan Profiling in Health and Disease. PLoS ONE, 2015, 10, e0123028.	1.1	15
65	The Impact of Different DNA Extraction Kits and Laboratories upon the Assessment of Human Gut Microbiota Composition by 16S rRNA Gene Sequencing. PLoS ONE, 2014, 9, e88982.	1.1	236
66	Clinical utility and diagnostic accuracy of faecal calprotectin for IBD at first presentation to gastroenterology services in adults aged 16–50years. Journal of Crohn's and Colitis, 2014, 9, 41-9.	0.6	43
67	Crohn's disease. BMJ, The, 2014, 349, g6670-g6670.	3.0	74
68	Advances in IBD genetics. Nature Reviews Gastroenterology and Hepatology, 2014, 11, 372-385.	8.2	114
69	HLA-DQA1–HLA-DRB1 variants confer susceptibility to pancreatitis induced by thiopurine immunosuppressants. Nature Genetics, 2014, 46, 1131-1134.	9.4	165
70	The role of glycosylation in IBD. Nature Reviews Gastroenterology and Hepatology, 2014, 11, 588-600.	8.2	123
71	What do the terms "genetic predisposition―and "genetic heterogeneity―mean in relation to inflammatory bowel disease?. Inflammatory Bowel Diseases, 2008, 14, S31-S32.	0.9	0
72	Reply to Daly and Rioux response. European Journal of Human Genetics, 2006, 14, 261-261.	1.4	1

#	Article	IF	CITATIONS
73	Molecular genetics in gastroenterology: from research success to clinical application?. Nature Reviews Gastroenterology & Hepatology, 2005, 2, 118-119.	1.7	1
74	Genetics of inflammatory bowel disease: from bench to bedside?. Acta Odontologica Scandinavica, 2001, 59, 187-192.	0.9	11
75	Two-Stage Genome-Wide Search in Inflammatory Bowel Disease: Strong Evidence for Susceptibility LOCI on Chromosomes 3, 7 and 12. Clinical Science, 1997, 93, 18P-19P.	0.0	0
76	Two stage genome–wide search in inflammatory bowel disease provides evidence for susceptibility loci on chromosomes 3, 7 and 12. Nature Genetics, 1996, 14, 199-202.	9.4	682