Dick Jan Broer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/543790/publications.pdf

Version: 2024-02-01

310 papers

18,890 citations

65 h-index 128 g-index

338 all docs

338 docs citations

times ranked

338

10758 citing authors

#	Article	IF	CITATIONS
1	Programmable and adaptive mechanics with liquid crystal polymer networks and elastomers. Nature Materials, 2015, 14, 1087-1098.	13.3	1,250
2	Printed artificial cilia from liquid-crystal network actuators modularly driven by light. Nature Materials, 2009, 8, 677-682.	13.3	890
3	Nanomotor rotates microscale objects. Nature, 2006, 440, 163-163.	13.7	781
4	Making waves in a photoactive polymer film. Nature, 2017, 546, 632-636.	13.7	738
5	Wide-band reflective polarizers from cholesteric polymer networks with a pitch gradient. Nature, 1995, 378, 467-469.	13.7	671
6	Title is missing!. Die Makromolekulare Chemie, 1989, 190, 2255-2268.	1.1	431
7	Large amplitude light-induced motion in high elastic modulus polymer actuators. Journal of Materials Chemistry, 2005, 15, 5043.	6.7	331
8	A chaotic self-oscillating sunlight-driven polymer actuator. Nature Communications, 2016, 7, 11975.	5.8	329
9	Engineering of Complex Order and the Macroscopic Deformation of Liquid Crystal Polymer Networks. Angewandte Chemie - International Edition, 2012, 51, 12469-12472.	7.2	297
10	Humidity-Responsive Liquid Crystalline Polymer Actuators with an Asymmetry in the Molecular Trigger That Bend, Fold, and Curl. Journal of the American Chemical Society, 2014, 136, 10585-10588.	6.6	280
11	4D Printed Actuators with Softâ€Robotic Functions. Macromolecular Rapid Communications, 2018, 39, 1700710.	2.0	268
12	Thermo-Mechanical Responses of Liquid-Crystal Networks with a Splayed Molecular Organization. Advanced Functional Materials, 2005, 15, 1155-1159.	7.8	256
13	Artificial cilia for active micro-fluidic mixing. Lab on A Chip, 2008, 8, 533.	3.1	250
14	In-situ photopolymerization of an oriented liquid-crystalline acrylate. Die Makromolekulare Chemie, 1988, 189, 185-194.	1.1	241
15	Chiral nematic order in liquid crystals imposed by an engineered inorganic nanostructure. Nature, 1999, 399, 764-766.	13.7	236
16	Large Area Liquid Crystal Monodomain Field-Effect Transistors. Journal of the American Chemical Society, 2006, 128, 2336-2345.	6.6	222
17	Glassy photomechanical liquid-crystal network actuators for microscale devices. European Physical Journal E, 2007, 23, 329-336.	0.7	220
18	Functional Organic Materials Based on Polymerized Liquidâ€Crystal Monomers: Supramolecular Hydrogenâ€Bonded Systems. Angewandte Chemie - International Edition, 2012, 51, 7102-7109.	7.2	219

#	Article	IF	Citations
19	Accordionâ€ike Actuators of Multiple 3D Patterned Liquid Crystal Polymer Films. Advanced Functional Materials, 2014, 24, 1251-1258.	7.8	206
20	Rotational Reorganization of Doped Cholesteric Liquid Crystalline Films. Journal of the American Chemical Society, 2006, 128, 14397-14407.	6.6	200
21	Title is missing!. Die Makromolekulare Chemie, 1989, 190, 3201-3215.	1.1	197
22	Mastering the Photothermal Effect in Liquid Crystal Networks: A General Approach for Selfâ€Sustained Mechanical Oscillators. Advanced Materials, 2017, 29, 1606712.	11.1	191
23	Liquid Crystal Polymer Networks: Preparation, Properties, and Applications of Films with Patterned Molecular Alignment. Langmuir, 2014, 30, 13499-13509.	1.6	188
24	Single-substrate liquid-crystal displays by photo-enforced stratification. Nature, 2002, 417, 55-58.	13.7	181
25	Bending Dynamics and Directionality Reversal in Liquid Crystal Network Photoactuators. Macromolecules, 2008, 41, 8592-8596.	2.2	180
26	Photo-Induced Diffusion in Polymerizing Chiral-Nematic Media. Advanced Materials, 1999, 11, 573-578.	11.1	167
27	Printable Optical Sensors Based on H-Bonded Supramolecular Cholesteric Liquid Crystal Networks. Journal of the American Chemical Society, 2012, 134, 7608-7611.	6.6	162
28	Photoâ€Switchable Surface Topologies in Chiral Nematic Coatings. Angewandte Chemie - International Edition, 2012, 51, 892-896.	7.2	158
29	Selfâ€nssembled Dynamic 3D Fingerprints in Liquidâ€Crystal Coatings Towards Controllable Friction and Adhesion. Angewandte Chemie - International Edition, 2014, 53, 4542-4546.	7.2	139
30	Self-Assembled Polymer Films for Controlled Agent-Driven Motion. Nano Letters, 2005, 5, 1857-1860.	4.5	136
31	Three-dimensionally ordered polymer networks with a helicoidal structure. Macromolecules, 1990, 23, 2474-2477.	2.2	135
32	Title is missing!. Die Makromolekulare Chemie, 1991, 192, 59-74.	1,1	135
33	Synthesis and photopolymerization of a liquid-crystalline diepoxide. Macromolecules, 1993, 26, 1244-1247.	2.2	135
34	Stimuliâ€Responsive Materials Based on Interpenetrating Polymer Liquid Crystal Hydrogels. Advanced Functional Materials, 2015, 25, 3314-3320.	7.8	132
35	A Rewritable, Reprogrammable, Dual Lightâ€Responsive Polymer Actuator. Angewandte Chemie - International Edition, 2017, 56, 13436-13439.	7.2	127
36	New insights into photoactivated volume generation boost surface morphing in liquid crystal coatings. Nature Communications, 2015, 6, 8334.	5.8	123

#	Article	IF	CITATIONS
37	Stimuli-responsive photonic polymer coatings. Chemical Communications, 2014, 50, 15839-15848.	2.2	119
38	Programmed morphing of liquid crystal networks. Polymer, 2014, 55, 5885-5896.	1.8	119
39	Dynamic mechanical properties of anisotropic networks formed by liquid crystalline acrylates. Polymer, 1991, 32, 1627-1632.	1.8	118
40	Photoresponsive Fiber Array: Toward Mimicking the Collective Motion of Cilia for Transport Applications. Advanced Functional Materials, 2016, 26, 5322-5327.	7.8	116
41	Optical Monitoring of Gases with Cholesteric Liquid Crystals. Journal of the American Chemical Society, 2010, 132, 2961-2967.	6.6	114
42	Liquid crystal elastomer coatings with programmed response of surface profile. Nature Communications, 2018, 9, 456.	5.8	114
43	Controlling Light Emission in Luminescent Solar Concentrators Through Use of Dye Molecules Aligned in a Planar Manner by Liquid Crystals. Advanced Functional Materials, 2009, 19, 2714-2719.	7.8	113
44	TiO2 Nanoparticle-Photopolymer Composites for Volume Holographic Recording. Advanced Functional Materials, 2005, 15, 1623-1629.	7.8	112
45	In situ photopolymerization of an oriented liquid-crystalline acrylate, 2. Die Makromolekulare Chemie, 1989, 190, 19-30.	1.1	111
46	Synthesis and photopolymerization of cholesteric liquid crystalline diacrylates. Liquid Crystals, 1995, 18, 319-326.	0.9	111
47	Room temperature preparation of conductive silver features using spin-coating and inkjet printing. Journal of Materials Chemistry, 2010, 20, 543-546.	6.7	104
48	Photoinduced Plasticity in Crossâ€Linked Liquid Crystalline Networks. Advanced Materials, 2017, 29, 1606509.	11.1	103
49	Fully Reversible Transition from Wenzel to Cassieâ^Baxter States on Corrugated Superhydrophobic Surfaces. Langmuir, 2010, 26, 3335-3341.	1.6	102
50	Responsive Nanoporous Smectic Liquid Crystal Polymer Networks as Efficient and Selective Adsorbents. Advanced Functional Materials, 2014, 24, 5045-5051.	7.8	102
51	Light-Induced Formation of Dynamic and Permanent Surface Topologies in Chiral–Nematic Polymer Networks. Macromolecules, 2012, 45, 8005-8012.	2.2	101
52	Anisotropic thermal expansion of densely cross-linked oriented polymer networks. Polymer Engineering and Science, 1991, 31, 625-631.	1.5	91
53	High-Contrast Thin-Film Polarizers by Photo-Crosslinking of Smectic Guest–Host Systems. Advanced Materials, 2006, 18, 2412-2417.	11.1	91
54	A four-blade light-driven plastic mill based on hydrazone liquid-crystal networks. Tetrahedron, 2017, 73, 4963-4967.	1.0	90

#	Article	IF	Citations
55	Oriented polymer networks obtained by photopolymerization of liquid-crystalline monomers. Angewandte Makromolekulare Chemie, 1990, 183, 45-66.	0.3	80
56	Oscillating Chiralâ€Nematic Fingerprints Wipe Away Dust. Advanced Materials, 2018, 30, 1704970.	11.1	80
57	Reverse switching of surface roughness in a self-organized polydomain liquid crystal coating. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 3880-3885.	3.3	78
58	Unravelling the photothermal and photomechanical contributions to actuation of azobenzene-doped liquid crystal polymers in air and water. Journal of Materials Chemistry C, 2019, 7, 13502-13509.	2.7	78
59	Four-Dimensional Printed Liquid Crystalline Elastomer Actuators with Fast Photoinduced Mechanical Response toward Light-Driven Robotic Functions. ACS Applied Materials & Samp; Interfaces, 2020, 12, 44195-44204.	4.0	77
60	Stimuli Responsive Delivery Vehicles for Cardiac Microtissue Transplantation. Advanced Functional Materials, 2011, 21, 1624-1630.	7.8	75
61	Progress in phosphors and filters for luminescent solar concentrators. Optics Express, 2012, 20, A395.	1.7	71
62	Temperature-Responsive, Multicolor-Changing Photonic Polymers. ACS Applied Materials & Discrete Responsive, Multicolor-Changing Photonic Polymers. ACS Applied Materials & Discrete Responsive, Multicolor-Changing Photonic Polymers. ACS Applied Materials & Discrete Responsive, Multicolor-Changing Photonic Polymers. ACS Applied Materials & Discrete Responsive, Multicolor-Changing Photonic Polymers. ACS Applied Materials & Discrete Responsive, Multicolor-Changing Photonic Polymers. ACS Applied Materials & Discrete Responsive, Multicolor-Changing Photonic Polymers. ACS Applied Materials & Discrete Responsive, Multicolor-Changing Photonic Polymers. ACS Applied Materials & Discrete Responsive Responsiv	4.0	70
63	Circular dichroism of cholesteric polymers and the orbital angular momentum of light. Physical Review A, $2011, 83, .$	1.0	68
64	Charge transport in high-performance ink-jet printed single-droplet organic transistors based on a silylethynyl substituted pentacene/insulating polymer blend. Organic Electronics, 2011, 12, 1319-1327.	1.4	68
65	Regulating the modulus of a chiral liquid crystal polymer network by light. Soft Matter, 2016, 12, 3196-3201.	1.2	68
66	Block Copolymer Thermoplastic Elastomers for Microcontact Printing. Langmuir, 2003, 19, 10957-10961.	1.6	67
67	Nanoporous Membranes of Hydrogenâ€bridged Smectic Networks with Nanometer Transverse Pore Dimensions. Advanced Materials, 2008, 20, 1246-1252.	11.1	67
68	Alcoholâ€Responsive, Hydrogenâ€Bonded, Cholesteric Liquidâ€Crystal Networks. Advanced Functional Materials, 2012, 22, 2855-2859.	7.8	64
69	Photoswitchable Ratchet Surface Topographies Based on Self-Protonating Spiropyran–NIPAAM Hydrogels. ACS Applied Materials & Interfaces, 2014, 6, 7268-7274.	4.0	64
70	Subâ€5 nm Patterning by Directed Selfâ€Assembly of Oligo(Dimethylsiloxane) Liquid Crystal Thin Films. Advanced Materials, 2016, 28, 10068-10072.	11.1	64
71	3D Helix Engineering in Chiral Photonic Materials. Advanced Materials, 2019, 31, e1903120.	11.1	64
72	Irreversible visual sensing of humidity using a cholesteric liquid crystal. Chemical Communications, 2012, 48, 4579.	2.2	63

#	Article	IF	Citations
73	Easily Processable and Programmable Responsive Semiâ€Interpenetrating Liquid Crystalline Polymer Network Coatings with Changing Reflectivities and Surface Topographies. Advanced Functional Materials, 2018, 28, 1704756.	7.8	63
74	Effect on the output of a luminescent solar concentrator on application of organic wavelength-selective mirrors. Applied Optics, 2010, 49, 745.	2.1	62
75	Temperature effects on the kinetics of photoinitiated polymerization of dimethacrylates. Polymer, 1991, 32, 690-695.	1.8	61
76	Chemical vapour deposition of poly(1,4-phenylenevinylene) films. Synthetic Metals, 1994, 67, 71-75.	2.1	61
77	Reaction–diffusion model for the preparation of polymer gratings by patterned ultraviolet illumination. Journal of Applied Physics, 2004, 95, 4125-4139.	1.1	61
78	Patterned Alignment of Liquid Crystals by ?-Rubbing. Advanced Materials, 2004, 16, 1600-1605.	11.1	60
79	Simplified spectropolarimetry using reactive mesogen polarization gratings., 2006, 6302, 21.		60
80	An Optical Sensor for Volatile Amines Based on an Inkjetâ€Printed, Hydrogenâ€Bonded, Cholesteric Liquid Crystalline Film. Advanced Optical Materials, 2014, 2, 459-464.	3.6	60
81	Anisotropic networks formed by photopolymerization of liquid-crystalline molecules. Advanced Materials, 1991, 3, 392-394.	11.1	59
82	Anisotropic polymerization shrinkage behaviour of liquid-crystalline diacrylates. Polymer, 1992, 33, 89-95.	1.8	59
83	Photopatterned liquid crystalline polymers for microactuators. Journal of Materials Chemistry, 2006, 16, 2903.	6.7	59
84	Optical generation, templating, and polymerization of three-dimensional arrays of liquid-crystal defects decorated by plasmonic nanoparticles. Physical Review E, 2013, 87, .	0.8	58
85	Light controlled friction at a liquid crystal polymer coating with switchable patterning. Soft Matter, 2014, 10, 7952-7958.	1.2	58
86	Photoembossing of Periodic Relief Structures Using Polymerization- Induced Diffusion: A Combinatorial Study. Advanced Materials, 2005, 17, 2567-2571.	11.1	57
87	Reconfiguring Nanocomposite Liquid Crystal Polymer Films with Visible Light. Macromolecules, 2016, 49, 1575-1581.	2.2	55
88	A Scattering Electro-Optical Switch Based on Dendrimers Dispersed in Liquid Crystals. Advanced Materials, 2000, 12, 715-719.	11.1	54
89	Isotropic "lslands―in a Cholesteric "Sea― Patterned Thermal Expansion for Responsive Surface Topologies. Advanced Materials, 2006, 18, 1842-1845.	11.1	54
90	Nanoporous membranes based on liquid crystalline polymers. Liquid Crystals, 2011, 38, 1627-1639.	0.9	54

#	Article	IF	Citations
91	Physical Properties of Anisotropically Swelling Hydrogen-Bonded Liquid Crystal Polymer Actuators. Journal of Microelectromechanical Systems, 2007, 16, 480-488.	1.7	53
92	Protruding organic surfaces triggered by in-plane electric fields. Nature Communications, 2017, 8, 1526.	5.8	53
93	Azeotropic Binary Solvent Mixtures for Preparation of Organic Single Crystals. Advanced Functional Materials, 2009, 19, 3610-3617.	7.8	52
94	Liquid crystal polymer networks: switchable surface topographies. Liquid Crystals Reviews, 2013, 1, 20-28.	1.1	52
95	Direct Ink Writing of a Lightâ€Responsive Underwater Liquid Crystal Actuator with Atypical Temperatureâ€Dependent Shape Changes. Advanced Functional Materials, 2020, 30, 2005560.	7.8	51
96	Polymer-Filled Nematics: A New Class of Light-Scattering Materials for Electro-Optical Switches. Advanced Materials, 2000, 12, 753-757.	11.1	50
97	Preparation and Characterization of Structured Hydrogel Microparticles Based on Cross-Linked Hyperbranched Polyglycerol. Langmuir, 2007, 23, 11819-11825.	1.6	50
98	Photoresponsive Spongeâ€Like Coating for Onâ€Demand Liquid Release. Advanced Functional Materials, 2018, 28, 1705942.	7.8	50
99	Formation of Optical Films by Photo-Polymerisation of Liquid Crystalline Acrylates and Application of These Films in Liquid Crystal Display Technology. Molecular Crystals and Liquid Crystals, 2005, 429, 77-99.	0.4	49
100	Photoâ€responsive Helical Motion by Lightâ€Driven Molecular Motors in a Liquidâ€Crystal Network. Angewandte Chemie - International Edition, 2021, 60, 8251-8257.	7.2	49
101	Microrubbing technique to produce high pretilt multidomain liquid crystal alignment. Applied Physics Letters, 2004, 85, 230-232.	1.5	48
102	Light-Induced Orientation of Liquid Crystalline Terpolymers Containing Azobenzene and Dye Moieties. Macromolecules, 2005, 38, 2213-2222.	2.2	48
103	Photoinduced Opposite Diffusion of Nematic and Isotropic Monomers during Patterned Photopolymerization. Chemistry of Materials, 1998, 10, 135-145.	3.2	46
104	Alignment and switching of nematic liquid crystals embedded in porous chiral thin films. Liquid Crystals, 2000, 27, 387-391.	0.9	44
105	Photoswitchable Hydrogel Surface Topographies by Polymerisationâ€Induced Diffusion. Chemistry - A European Journal, 2013, 19, 10922-10927.	1.7	44
106	Design and applications of light responsive liquid crystal polymer thin films. Applied Physics Reviews, 2020, 7, .	5.5	44
107	Coupled liquid crystalline oscillators in Huygens' synchrony. Nature Materials, 2021, 20, 1702-1706.	13.3	44
108	A Glassy Bending-Mode Polymeric Actuator Which Deforms in Response to Solvent Polarity. Macromolecular Rapid Communications, 2006, 27, 1323-1329.	2.0	43

#	Article	IF	Citations
109	Patterned Full-Color Reflective Coatings Based on Photonic Cholesteric Liquid-Crystalline Particles. ACS Applied Materials & Samp; Interfaces, 2019, 11, 14376-14382.	4.0	42
110	Monodisperse, Polymeric Nano―and Microsieves Produced with Interference Holography. Advanced Materials, 2009, 21, 1751-1755.	11.1	41
111	Patterned dye structures limit reabsorption in luminescent solar concentrators. Optics Express, 2010, 18, A536.	1.7	41
112	Laser-induced optical recording in thin films. Applied Physics A: Solids and Surfaces, 1983, 32, 107-123.	1.4	40
113	Hydrophilic Elastomers for Microcontact Printing of Polar Inks. Langmuir, 2004, 20, 4738-4742.	1.6	39
114	Increased efficiency of luminescent solar concentrators after application of organic wavelength selective mirrors. Optics Express, 2012, 20, A655.	1.7	39
115	Discrimination of Alcohol Molecules Using Hydrogen-Bridged Cholesteric Polymer Networks. Macromolecules, 2012, 45, 4550-4555.	2.2	39
116	Water-responsive dual-coloured photonic polymer coatings based on cholesteric liquid crystals. RSC Advances, 2015, 5, 94650-94653.	1.7	39
117	InP-based two-dimensional photonic crystals filled with polymers. Applied Physics Letters, 2006, 88, 161112.	1.5	38
118	A Birefringent and Transparent Electrical Conductor. Advanced Functional Materials, 2008, 18, 2147-2153.	7.8	38
119	Patterned Silver Nanoparticles embedded in a Nanoporous Smectic Liquid Crystalline Polymer Network. Journal of the American Chemical Society, 2013, 135, 10922-10925.	6.6	38
120	A real time optical strain sensor based on a cholesteric liquid crystal network. RSC Advances, 2013, 3, 18794.	1.7	38
121	New functional polymers for liquid crystal displays review of some recent developments. Macromolecular Symposia, 2000, 154, 1-14.	0.4	37
122	Anisotropic wetting and de-wetting of drops on substrates patterned with polygonal posts. Soft Matter, 2013, 9, 674-683.	1.2	37
123	Lightâ€Driven Electrohydrodynamic Instabilities in Liquid Crystals. Advanced Functional Materials, 2018, 28, 1707436.	7.8	35
124	Light Tracking and Light Guiding Fiber Arrays by Adjusting the Location of Photoresponsive Azobenzene in Liquid Crystal Networks. Advanced Optical Materials, 2020, 8, 2000732.	3.6	35
125	Electric Field Confinement Effect on Charge Transport in Organic Field-Effect Transistors. Physical Review Letters, 2012, 108, 066601.	2.9	34
126	Liquid Crystal Alignment and Switching in Porous Chiral Thin Films. Advanced Materials, 2000, 12, 371-373.	11.1	33

#	Article	IF	CITATIONS
127	Selfâ€sustained actuation from heat dissipation in liquid crystal polymer networks. Journal of Polymer Science Part A, 2018, 56, 1331-1336.	2.5	33
128	Creation of Supramolecular Thin Film Architectures with Liquid-Crystalline Networks. Molecular Crystals and Liquid Crystals, 1995, 261, 513-523.	0.3	32
129	Two-dimensional pH-responsive printable smectic hydrogels. Chemical Communications, 2012, 48, 4555.	2.2	32
130	(Photo-)Thermally Induced Formation of Dynamic Surface Topographies in Polymer Hydrogel Networks. Langmuir, 2013, 29, 5622-5629.	1.6	32
131	Light-Triggered Formation of Surface Topographies in Azo Polymers. Crystals, 2017, 7, 231.	1.0	32
132	Consequences of Chirality in Directing the Pathway of Cholesteric Helix Inversion of π onjugated Polymers by Light. Advanced Materials, 2021, 33, e2005720.	11.1	32
133	Electroconvection in Zwitterionâ€Doped Nematic Liquid Crystals and Application as Smart Windows. Advanced Optical Materials, 2021, 9, 2001465.	3.6	32
134	The Use of Cholesterically-Ordered Polymer Networks in Practical Applications. Molecular Crystals and Liquid Crystals, 1991, 203, 113-126.	0.7	30
135	Optical activity of chiral thin film and liquid crystal hybrids. Liquid Crystals, 2001, 28, 1799-1803.	0.9	29
136	Mass transport phenomena during lithographic polymerization of nematic monomers monitored with interferometry. Journal of Applied Physics, 2005, 97, 123519.	1.1	29
137	Photoresponsive Nanoporous Smectic Liquid Crystalline Polymer Networks: Changing the Number of Binding Sites and Pore Dimensions in Polymer Adsorbents by Light. Macromolecules, 2015, 48, 4073-4080.	2.2	29
138	Penetration of p-xylylene vapor into small channels prior to polymerization. Journal of Applied Polymer Science, 1981, 26, 2415-2422.	1.3	28
139	Linearly polarized light-emitting backlight. Journal of the Society for Information Display, 2002, 10, 107.	0.8	28
140	High aspect ratio surface relief structures by photoembossing. Applied Physics Letters, 2007, 91, .	1.5	28
141	Re―and Preconfigurable Multistable Visible Light Responsive Surface Topographies. Small, 2018, 14, e1803274.	5.2	28
142	A self-sustained soft actuator able to rock and roll. Chemical Communications, 2019, 55, 11029-11032.	2.2	28
143	Combined Light and Electric Response of Topographic Liquid Crystal Network Surfaces. Advanced Functional Materials, 2020, 30, 1901681.	7.8	28
144	Synthesis and Polymerization of Liquid Crystals Containing Vinyl and Mercapto Groups. Liebigs Annalen, 1997, 1997, 2281-2288.	0.8	27

#	Article	IF	CITATIONS
145	New Approach toward Reflective Films and Fibers Using Cholesteric Liquid-Crystal Coatings. ACS Applied Materials & Diterfaces, 2013, 5, 7117-7121.	4.0	27
146	Single-composition three-dimensionally morphing hydrogels. Soft Matter, 2013, 9, 588-596.	1.2	27
147	Patterned oscillating topographical changes in photoresponsive polymer coatings. Soft Matter, 2017, 13, 4321-4327.	1.2	27
148	The formation of a liquid crystalline main chain polymer by means of photopolymerization. Liquid Crystals, 1998, 24, 375-379.	0.9	26
149	Viscoelastic liquid crystal colloids for the continuous processing of twisted nematic electro-optical cells. Journal of Applied Physics, 2001, 89, 838-842.	1.1	25
150	Deformed chiral-nematic networks obtained by polarized excitation of a dichroic photoinitiator. Current Opinion in Solid State and Materials Science, 2002, 6, 553-561.	5.6	25
151	Four-domain twisted vertically aligned liquid crystal pixels using microrubbing. Applied Physics Letters, 2005, 86, 181914.	1.5	25
152	Improved Microcontact Printing of Proteins using Hydrophilic Thermoplastic Elastomers as Stamp Materials. Advanced Engineering Materials, 2007, 9, 1123-1128.	1.6	25
153	Printing of Monolithic Polymeric Microstructures Using Reactive Mesogens. Advanced Materials, 2008, 20, 74-78.	11.1	25
154	Patterns of Diacetylene-Containing Peptide Amphiphiles Using Polarization Holography. Journal of the American Chemical Society, 2009, 131, 15014-15017.	6.6	25
155	Thermo-reversible Liquid-Crystal Gels: Towards a New Processing Route for Twisted Nematic Displays. Japanese Journal of Applied Physics, 2000, 39, 2721-2726.	0.8	24
156	Improving the Brightness and Daylight Contrast of Organic Light-Emitting Diodes. Advanced Functional Materials, 2005, 15, 138-142.	7.8	24
157	Synthesis, Properties, and Polymerization of New Liquid Crystalline Monomers for Highly Ordered Guestâ [^] Host Systems. Chemistry of Materials, 2008, 20, 6076-6086.	3.2	24
158	Electrically controlled light scattering from thermoreversible liquid-crystal gels. Journal of Applied Physics, 2000, 88, 161-167.	1.1	23
159	Synthesis and properties of phenyl benzoate-based and biphenyl-based liquid crystalline thiol-ene monomers. Liquid Crystals, 2003, 30, 93-108.	0.9	23
160	Simulations with a dynamic reaction–diffusion model of the polymer grating preparation by patterned ultraviolet illumination. Journal of Applied Physics, 2004, 95, 8352-8356.	1.1	23
161	High-Throughput Screening and Optimization of Photoembossed Relief Structures. ACS Combinatorial Science, 2006, 8, 184-191.	3.3	23
162	Nanoporous polymer particles made by suspension polymerization: spontaneous symmetry breaking in hydrogen bonded smectic liquid crystalline droplets and high adsorption characteristics. Polymer Chemistry, 2016, 7, 4712-4716.	1.9	23

#	Article	IF	CITATIONS
163	Artificial Organic Skin Wets Its Surface by Field-Induced Liquid Secretion. Matter, 2020, 3, 782-793.	5.0	23
164	Photo-Initiated Polymerization of Liquid Crystalline Thiol-Ene Monomers in Isotropic and Anisotropic Solvents. Journal of Physical Chemistry B, 2002, 106, 12874-12883.	1.2	22
165	Large-area microfabrication of three-dimensional, helical polymer structures. Journal of Micromechanics and Microengineering, 2005, 15, 49-54.	1.5	22
166	Optimizing Photo-Embossed Gratings:Â A Gradient Library Approach. ACS Combinatorial Science, 2006, 8, 228-236.	3.3	22
167	Fabrication and Postmodification of Nanoporous Liquid Crystalline Networks via Dynamic Covalent Chemistry. Chemistry of Materials, 2017, 29, 6601-6605.	3.2	22
168	Colourful photo-curable coatings for application in the electro-optical industry. Progress in Organic Coatings, 2002, 45, 211-217.	1.9	21
169	Alignment of Liquid Crystals on Self-Assembled Monolayers Using Ultra-Thin Gold Films. Advanced Materials, 2002, 14, 655-658.	11.1	21
170	Microcutting Materials on Polymer Substrates. Advanced Functional Materials, 2002, 12, 105-109.	7.8	21
171	A dielectric study on the relaxation and switching behaviour of liquid crystals confined within a colloidal network. Liquid Crystals, 2003, 30, 235-249.	0.9	21
172	Highly Efficient Surface Relief Formation via Photoembossing of a Supramolecular Polymer. Macromolecular Chemistry and Physics, 2008, 209, 2094-2099.	1.1	21
173	Influence of Solid-State Microstructure on the Electronic Performance of 5,11-Bis(triethylsilylethynyl) Anthradithiophene. Chemistry of Materials, 2013, 25, 1823-1828.	3.2	21
174	38.3: Polarized Light LCD Backlight Based on Liquid Crystalline Polymer Film: A New Manufacturing Process. Digest of Technical Papers SID International Symposium, 2004, 35, 1178.	0.1	20
175	Anisotropic light emissions in luminescent solar concentrators–isotropic systems. Optics Express, 2013, 21, A485.	1.7	20
176	Molecular ordering in a liquid crystalline material visualized by scanning electron microscopy. Journal of Materials Science, 1992, 27, 4107-4114.	1.7	19
177	Photoâ€controlled diffusion in reacting liquid crystals: A new tool for the creation of complex molecular architectures. Macromolecular Symposia, 1997, 117, 33-42.	0.4	19
178	Photoinitiated Bulk Polymerization of Liquid Crystalline Thiolene Monomers. Macromolecules, 2002, 35, 8962-8968.	2.2	19
179	Anisotropic light emission from aligned luminophores. EPJ Applied Physics, 2014, 67, 10201.	0.3	19
180	A Rewritable, Reprogrammable, Dual Lightâ€Responsive Polymer Actuator. Angewandte Chemie, 2017, 129, 13621-13624.	1.6	19

#	Article	IF	CITATIONS
181	Morphing of liquid crystal surfaces by emergent collectivity. Nature Communications, 2019, 10, 3501.	5.8	19
182	45.3: Micro-structured Polymeric Linearly Polarized Light Emitting Lightguide for LCD Illumination. Digest of Technical Papers SID International Symposium, 2002, 33, 1236.	0.1	18
183	Patterned Alignment of Liquid Crystals on Selectively Thiol-Functionalized Photo-Orientation Layers. Advanced Materials, 2003, 15, 985-988.	11.1	18
184	Polarization-independent filters for luminescent solar concentrators. Applied Physics Letters, 2011, 98, 021111.	1.5	18
185	Photoswitching between Waterâ€Tolerant Adhesion and Swift Release by Inverting Liquid Crystal Fingerprint Topography. Advanced Science, 2021, 8, 2004051.	5.6	18
186	Photopolymerization-enforced stratification in liquid crystal materials. Progress in Polymer Science, 2021, 114, 101365.	11.8	18
187	Metallopolymers:  Preparation of Polymer Films with a High Content of Metal Centers via Photopolymerization of Metal-Containing Liquid-Crystalline Monomers. Chemistry of Materials, 1997, 9, 2051-2058.	3.2	17
188	Orientational properties and dynamics of nematic liquid crystals mixed with dendrimers for electro-optical switches. Liquid Crystals, 2004, 31, 1207-1218.	0.9	16
189	The Synthesis and Polymerisation of a Liquid Crystalline Crosslinkable Thiol-Ene Molecule. Molecular Crystals and Liquid Crystals, 1999, 332, 259-266.	0.3	15
190	Electroplasticization of Liquid Crystal Polymer Networks. ACS Applied Materials & Distribution (1992), 19927-19937.	4.0	15
191	Phototriggered Complex Motion by Programmable Construction of Light-Driven Molecular Motors in Liquid Crystal Networks. Journal of the American Chemical Society, 2022, 144, 6851-6860.	6.6	15
192	Electro-optical switches based on polymer and dendrimer filled nematics. Macromolecular Symposia, 2000, 154, 25-36.	0.4	14
193	Polarization-dependent Goos–Hächen shift at a graded dielectric interface. Optics Communications, 2010, 283, 3367-3370.	1.0	14
194	On the History of Reactive Mesogens: Interview with Dirk J. Broer. Advanced Materials, 2020, 32, e1905144.	11.1	14
195	Functional Liquid Crystal Polymer Surfaces with Switchable Topographies. Small Structures, 2021, 2, 2000107.	6.9	14
196	'Smart' lightâ€reflective windows based on temperature responsive twisted nematic liquid crystal polymers. Journal of Polymer Science, 2021, 59, 1278-1284.	2.0	14
197	Generation of Anisotropic Emission by Light-Induced Orientation of Liquid Crystalline Polymers. Macromolecules, 2011, 44, 1438-1449.	2.2	13
198	Photoâ€Imprinting of the Helical Organization in Liquidâ€Crystal Networks Using Achiral Monomers and Circularly Polarized Light. Angewandte Chemie - International Edition, 2022, 61, .	7.2	13

#	Article	IF	CITATIONS
199	Doubly coated optical fibres with a low sensitivity to temperature and microbending. Journal of Lightwave Technology, 1989, 7, 680-686.	2.7	12
200	Light-Induced Demixing of Hole or Electron Transporting Moieties. Macromolecular Rapid Communications, 2004, 25, 1765-1770.	2.0	12
201	Rapid, direct fabrication of antireflection-coated microlens arrays by photoembossing. Applied Optics, 2008, 47, 6512.	2.1	12
202	Using Lenses to Improve the Output of a Patterned Luminescent Solar Concentrator. Advanced Energy Materials, 2013, 3, 337-341.	10.2	12
203	Travelling waves on photo-switchable patterned liquid crystal polymer films directed by rotating polarized light. Soft Matter, 2019, 15, 8040-8050.	1.2	12
204	Temperature―and Lightâ€Regulated Gas Transport in a Liquid Crystal Polymer Network. Advanced Functional Materials, 2019, 29, 1900857.	7.8	12
205	Photoâ€embossed Surface Relief Structures with an Increased Aspect Ratios by Addition of a Reversible Additionâ€Fragmentation Chain Transfer Agent. Advanced Materials, 2008, 20, 3117-3121.	11.1	11
206	Translating 2D Director Profile to 3D Topography in a Liquid Crystal Polymer. Advanced Science, 2021, 8, 2004749.	5.6	11
207	Optical fiber coatings: High modulus coatings for fibers with a low microbending sensitivity. Polymer Engineering and Science, 1989, 29, 1172-1176.	1.5	10
208	Template induced chiral ordering in nematic liquid crystalline materials: A deuterium nuclear magnetic resonance study. Journal of Applied Physics, 2006, 99, 116105.	1,1	10
209	Search for Hermite-Gauss mode rotation in cholesteric liquid crystals. Optics Express, 2011, 19, 12978.	1.7	10
210	Manufacturing of Surface Relief Structures in Moving Substrates Using Photoembossing and Pulsedâ€Interference Holography. Macromolecular Materials and Engineering, 2013, 298, 33-37.	1.7	10
211	Complianceâ€Mediated Topographic Oscillation of Polarized Light Triggered Liquid Crystal Coating. Advanced Materials Interfaces, 2018, 5, 1800810.	1.9	10
212	Localized Liquid Secretion from a Photopatterned Liquid-Crystal Polymer Skin. ACS Applied Polymer Materials, 2020, 2, 4071-4077.	2.0	10
213	Photoâ€responsive Helical Motion by Lightâ€Driven Molecular Motors in a Liquidâ€Crystal Network. Angewandte Chemie, 2021, 133, 8332-8338.	1.6	10
214	Versatile homeotropic liquid crystal alignment with tunable functionality prepared by one-step method. Journal of Colloid and Interface Science, 2022, 608, 2290-2297.	5.0	10
215	High pretilt four-domain twisted nematic liquid crystal display by microrubbing: Process, characterization, and optical simulation. Journal of Applied Physics, 2005, 97, 053101.	1.1	9
216	An efficient illumination system for liquid crystal displays incorporating an anisotropic hologram. Applied Physics Letters, 2005, 87, 094101.	1.5	9

#	Article	IF	CITATIONS
217	Fabrication of uniformly shaped hydrogel microparticles based on crosslinked hyperbranched polyglycerol by micromolding and photolithographic methods. Journal of Controlled Release, 2008, 132, e31-e32.	4.8	9
218	Polarization-selective polymerization in a photo-crosslinking monomer film. RSC Advances, 2014, 4, 62499-62504.	1.7	9
219	Oscillating Surfaces Fueled by a Continuous AC Electric Field. Advanced Materials Interfaces, 2019, 6, 1901292.	1.9	9
220	Temperatureâ€Responsive Polymer Wave Plates as Tunable Polarization Converters. Advanced Optical Materials, 2019, 7, 1901103.	3.6	9
221	Static and Dynamic Control of Fingerprint Landscapes of Liquid Crystal Network Coatings. ACS Applied Materials & Earny; Interfaces, 2020, 12, 5265-5273.	4.0	9
222	Quantification of Liquid Crystal Concentrations in Periodically Stratified Polymer-Dispersed Liquid Crystal Films by Dynamic Secondary Ion Mass Spectrometry and Multivariate Statistical Analysis. Journal of Physical Chemistry C, 2007, 111, 10965-10971.	1.5	8
223	Rapid Genotyping of Human Papillomavirus by Post-PCR Array-Based Hybridization Techniques. Journal of Clinical Microbiology, 2011, 49, 1395-1402.	1.8	8
224	Real time quantitative amplification detection on a microarray: towards high multiplex quantitative PCR. Lab on A Chip, 2012, 12, 1897.	3.1	8
225	Forming Spacers in Situ by Photolithography to Mechanically Stabilize Electrofluidic-Based Switchable Optical Elements. Materials, 2016, 9, 250.	1.3	8
226	Fast curing primary buffer coatings for high strength optical fibers. Journal of Lightwave Technology, 1986, 4, 938-941.	2.7	7
227	Liquid-crystalline ordering in polymeric networks as studied by polarized raman scattering. Journal of Polymer Science, Part B: Polymer Physics, 1992, 30, 215-220.	2.4	7
228	Visualization of the cholesteric texture near a Grandjean line. Liquid Crystals, 1993, 15, 745-748.	0.9	7
229	Thermo-reversible gelation of liquid crystals using di-benzylidene-D-sorbitol. Macromolecular Symposia, 2000, 154, 117-126.	0.4	7
230	Influence of laser writing of polyimides on the alignment of liquid crystals. Journal of Applied Physics, 2002, 91, 4191-4195.	1.1	7
231	The mutual diffusion coefficient for (meth)acrylate monomers as determined with a nuclear microprobe. Journal of Chemical Physics, 2004, 120, 1820-1825.	1.2	7
232	Photo-Induced Diffusion in Polymerizing Chiral-Nematic Media. , 1999, 11, 573.		7
233	Patterned and Collective Motion of Densely Packed Tapered Multiresponsive Liquid Crystal Cilia. Advanced Materials Technologies, 2022, 7, .	3.0	7
234	Nano-textured polymers for future architectural needs. Journal of Facade Design and Engineering, 2013, 1, 97-104.	0.1	6

#	Article	IF	Citations
235	Cholesteric Flakes in Motion Driven by the Elastic Force from Nematic Liquid Crystals. ACS Applied Materials & Samp; Interfaces, 2019, 11, 40916-40922.	4.0	6
236	Light-regulated molecular diffusion in a liquid crystal network. Soft Matter, 2019, 15, 4737-4742.	1.2	6
237	Photo-Polymerization of Liquid Crystalline Monomers in Anisotropic Solvents under Dynamic Conditions. Japanese Journal of Applied Physics, 2002, 41, 2128-2138.	0.8	5
238	Polarized light out-coupling from lightguides for LCDs. Chemical Record, 2005, 5, 59-69.	2.9	5
239	Engineering education on the †fuzzy' front end: a high-technology entrepreneurship model. European Journal of Engineering Education, 2006, 31, 145-153.	1.5	5
240	Three Techniques for Micropatterning Liquid Crystalline Polymers. Molecular Crystals and Liquid Crystals, 2007, 477, 137-151.	0.4	5
241	Control over the morphology of porous polymeric membranes for flow through biosensors. Journal of Membrane Science, 2008, 321, 51-60.	4.1	5
242	An <i>in situ</i> sealing method for liquid-filled micro-cavities based on photoembossing. Journal of Micromechanics and Microengineering, 2008, 18, 095022.	1.5	5
243	Thermoresponsive scattering coating for smart white LEDs. Optics Express, 2014, 22, A1868.	1.7	5
244	Preparation of Liquid Crystal Networks for Macroscopic Oscillatory Motion Induced by Light. Journal of Visualized Experiments, 2017 , , .	0.2	5
245	Light―and Fieldâ€Controlled Diffusion, Ejection, Flow and Collection of Liquid at a Nanoporous Liquid Crystal Membrane. Angewandte Chemie - International Edition, 2022, 61, .	7.2	5
246	Mechanical characterization of optical-fiber coatings by ultramicroindentation measurements. Applied Optics, 1985, 24, 960.	2.1	4
247	Molecular architectures in thin plastic films by in-situ photopolymerization of reactive liquid crystals. Journal of the Society for Information Display, 1995, 3, 185.	0.8	4
248	Cholesteric Thermo-reversible Liquid-Crystal Gels: Phase Behaviour and Electro-optical Response. Japanese Journal of Applied Physics, 2001, 40, 2372-2377.	0.8	4
249	3D-structured liquid crystal networks formed by dichroic photoinitiator initiated photopolymerization. Proceedings of SPIE, 2008, , .	0.8	4
250	Photo-embossed Surface Relief Structures with an Increased Aspect Ratio by Addition of Kinetic Interfering Compounds. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2009, 22, 667-670.	0.1	4
251	Immobilization of Oligonucleotides with Homo-oligomer Tails onto Amine-Functionalized Solid Substrates and the Effects on Hybridization. Analytical Chemistry, 2010, 82, 1191-1199.	3.2	4
252	A new view on displays. Nature, 2014, 511, 159-160.	13.7	4

#	Article	IF	Citations
253	Reactive oligo(dimethylsiloxane) mesogens and their nanostructured thin films. Soft Matter, 2017, 13, 4357-4362.	1.2	4
254	On the Dimensional Control of 2 D Hybrid Nanomaterials. Chemistry - A European Journal, 2017, 23, 12534-12541.	1.7	4
255	<title>Molecular orientation control for thermal and UV-driven polymer MEMS actuators</title> ., 2005,,.		3
256	Alignment of Liquid Crystals Infiltrated into Porous Thin Films with Tailored Nanostructures Grown by Glancing Angle Deposition. Molecular Crystals and Liquid Crystals, 2007, 475, 85-96.	0.4	3
257	Efficient and cost-effective polarized-light backlights for LCDs. , 2008, , .		3
258	Programmable polymer light emitting transistors with ferroelectric polarization-enhanced channel current and light emission. Organic Electronics, 2012, 13, 1742-1749.	1.4	3
259	Organic wavelength selective mirrors for luminescent solar concentrators. , 2012, , .		3
260	Optical and topographic changes in water-responsive patterned cholesteric liquid crystalline polymer coatings. Proceedings of SPIE, 2014, , .	0.8	3
261	Enhanced lithographic resolution using longitudinal polarization state of light. Journal of Micro/Nanolithography, MEMS, and MOEMS, 2015, 14, 043509.	1.0	3
262	Polarizationâ€Selective Patterning in an Anisotropic Smectic B Film. Advanced Optical Materials, 2016, 4, 677-681.	3.6	3
263	Biomimetic Liquid Crystal Cilia and Flagella. Polymers, 2022, 14, 1384.	2.0	3
264	Thermo-Optical Properties of a Polymer Dispersed Liquid Crystalline Polymer. Molecular Crystals and Liquid Crystals, 1995, 263, 415-427.	0.3	2
265	Selective photo-crosslinking of microphase-separated multiblock copolymers of poly(dimethylsiloxane) and phenylene diacrylate polyesters. Acta Polymerica, 1998, 49, 18-26.	1.4	2
266	Pâ€52: Birefringent Colour Reflective Liquid Crystal Displays Using Broadband Cholesteric Reflectors. Digest of Technical Papers SID International Symposium, 2000, 31, 742-745.	0.1	2
267	Review: Progress in liquid crystal displays by new developments in functional polymers. E-Polymers, 2001, 1, .	1.3	2
268	Transparent Slanted Phase Gratings in Emissive Waveguides. Advanced Materials, 2004, 16, 2108-2111.	11.1	2
269	<title>Polymeric helices with submicron dimensions for MEMS devices (Invited Paper) </title> ., 2005, 5836, 41.		2
270	Mesoscopic Concentration Variations Analyzed by Secondary Ion Mass Spectrometry. Molecular Crystals and Liquid Crystals, 2005, 434, 171/[499]-182/[510].	0.4	2

#	Article	lF	Citations
271	P-165: Use of Lyotropic Liquid Crystals for Patterned Polarizer and Retarder Applications. Digest of Technical Papers SID International Symposium, 2006, 37, 836.	0.1	2
272	Defects dictated. Nature Materials, 2010, 9, 99-100.	13.3	2
273	In-situ fabrication of polymer microsieves for \hat{l} /4TAS by slanted angle holography. Microfluidics and Nanofluidics, 2011, 10, 1299-1304.	1.0	2
274	Surface structuring of bi-component fibres with photoembossing. RSC Advances, 2012, 2, 9964.	1.7	2
275	Special dispersion chiral nematic reflectors for luminescent solar concentrators. , 2015, , .		2
276	Surface dynamics and mechanics in liquid crystal polymer coatings. Proceedings of SPIE, 2015, , .	0.8	2
277	Programmed topographical features generated on command in confined electroactive films. Soft Matter, 2021, 17, 7247-7251.	1.2	2
278	Nano-Second Laser Interference Photoembossed Microstructures for Enhanced Cell Alignment. Polymers, 2021, 13, 2958.	2.0	2
279	Colorful films for application in the electro-optical industry made by photopolymerization. , 2002, , .		1
280	L-5: Late-News Paper: Single-substrate LCDs Produced by Photo-enforced Stratification. Digest of Technical Papers SID International Symposium, 2002, 33, 1020.	0.1	1
281	Stimulated mechanical responses of liquid crystal networks with a splayed molecular organization (Invited Paper). , 2005, , .		1
282	Optical Investigation of Disclination Lines in Multidomain Twisted Nematic Liquid Crystal Display Created by Microrubbing. Molecular Crystals and Liquid Crystals, 2005, 433, 51-63.	0.4	1
283	Confocal Raman Microscopy of Liquid-Crystal-Filled Polymer Capsules Made by Photo-Enforced Stratification. Applied Spectroscopy, 2005, 59, 965-975.	1.2	1
284	Polymerization-induced diffusion as a tool to generate periodic relief structures: a combinatorial study. , 2006, , .		1
285	Photoresponsive Liquid Crystalline Polymeric Materials. Advances in Science and Technology, 0, , .	0.2	1
286	Photo-responsive surface topology in chiral nematic media. Proceedings of SPIE, 2012, , .	0.8	1
287	Selective Adsorption: Responsive Nanoporous Smectic Liquid Crystal Polymer Networks as Efficient and Selective Adsorbents (Adv. Funct. Mater. 32/2014). Advanced Functional Materials, 2014, 24, 5022-5022.	7.8	1
288	Frontispiece: Self-assembled Dynamic 3D Fingerprints in Liquid-Crystal Coatings Towards Controllable Friction and Adhesion. Angewandte Chemie - International Edition, 2014, 53, n/a-n/a.	7.2	1

#	Article	IF	CITATIONS
289	Pavlovian Polymers. Matter, 2020, 2, 19-20.	5.0	1
290	Oscillatory dynamic surface structures in patterned liquid crystal network coatings. , 2018, , .		1
291	Polymer MEMS. Liquid Crystals Book Series, 2011, , 251-285.	0.0	1
292	Liquid Crystal Polymer Membranes. , 2015, , 1-3.		1
293	Highâ€Frequency Surface Dynamics at an Electroactive Polymer Producing Underwater Soundwaves. Advanced Functional Materials, 0, , 2110754.	7.8	1
294	Optical performance of porous TiO2 chiral thin films., 2003,,.		0
295	Polarized back- and frontlights for LCDs. , 2004, , .		O
296	Patterned alignment of liquid crystals. , 2004, , .		0
297	Toward measuring concentration gradients in polymer-dispersed liquid crystals with secondary ion mass spectrometry., 2004, 5289, 94.		0
298	Paintable LCDs: Single-Substrate LCDs Produced by Photoenforced Stratification., 2005,, 355-368.		0
299	P-127: Multidomain Twisted Vertically Aligned Display by Microrubbing and its Simulations. Digest of Technical Papers SID International Symposium, 2005, 36, 788.	0.1	O
300	Multi-Configurations in Nematic Liquid Crystal Films: A Microrubbing Approach. Molecular Crystals and Liquid Crystals, 2005, 429, 55-63.	0.4	0
301	ON OPTIMUM PUPIL FIELDS WITH MAXIMUM ELECTRIC FIELD COMPONENT IN FOCUS. Journal of Nonlinear Optical Physics and Materials, 2010, 19, 189-201.	1.1	О
302	CHAPTER 7. Lightâ€actuated Artificial Cilia Based on Liquid Crystal Networks. RSC Nanoscience and Nanotechnology, 2013, , 142-161.	0.2	0
303	Engineered complex molecular order in liquid crystals towards unusual optics and responsive mechanics. , 2013, , .		О
304	Frontispiz: Self-assembled Dynamic 3D Fingerprints in Liquid-Crystal Coatings Towards Controllable Friction and Adhesion. Angewandte Chemie, 2014, 126, n/a-n/a.	1.6	0
305	Thermoresponsive scattering coating for smart white LEDs. Proceedings of SPIE, 2015, , .	0.8	0
306	Liquid Crystal Polymer Membranes. , 2016, , 1103-1104.		0

#	Article	IF	CITATIONS
307	Morphing dynamics in light-triggered LC polymers (Conference Presentation). , 2017, , .		O
308	Magnetic Resonance Monitoring of Opaque Temperature-Sensitive Polymeric Scaffolds. ACS Applied Bio Materials, 2020, 3, 7639-7645.	2.3	0
309	Electric field switched surface topography of fingerprint liquid-crystal network polymer coating. , 2018, , .		0
310	Fast Photo-induced Mechanical Response for Light-Driven Robotic Functions with 4D Printed Liquid Cristal Elastomers. , 0, , .		0