Osamu Seki

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/543771/publications.pdf Version: 2024-02-01

OSAMII SEKI

#	Article	IF	CITATIONS
1	Alkenone and boron-based Pliocene pCO2 records. Earth and Planetary Science Letters, 2010, 292, 201-211.	4.4	416
2	Hydrogen isotopic ratios of plant wax n-alkanes in a peat bog deposited in northeast China during the last 16kyr. Organic Geochemistry, 2009, 40, 671-677.	1.8	93
3	A compound-specific n-alkane l´13C and l`D approach for assessing source and delivery processes of terrestrial organic matter within a forested watershed in northern Japan. Geochimica Et Cosmochimica Acta, 2010, 74, 599-613.	3.9	68
4	Environmental influences over the last 16ka on compound-specific l´13C variations of leaf wax n-alkanes in the Hani peat deposit from northeast China. Chemical Geology, 2010, 277, 261-268.	3.3	60
5	North Atlantic Holocene climate evolution recorded by high-resolution terrestrial and marine biomarker records. Quaternary Science Reviews, 2015, 129, 111-127.	3.0	49
6	Plant-wax hydrogen isotopic evidence for postglacial variations in delivery of precipitation in the monsoon domain of China. Geology, 2011, 39, 875-878.	4.4	46
7	Holocene sea surface temperature and sea ice extent in the Okhotsk and Bering Seas. Progress in Oceanography, 2014, 126, 242-253.	3.2	46
8	Time-series sediment trap record of alkenones from the western Sea of Okhotsk. Marine Chemistry, 2007, 104, 253-265.	2.3	39
9	Ice-core records of biomass burning. Infrastructure Asset Management, 2016, 3, 140-162.	1.6	35
10	Fluxes, source and transport of organic matter in the western Sea of Okhotsk: Stable carbon isotopic ratios of n-alkanes and total organic carbon. Deep-Sea Research Part I: Oceanographic Research Papers, 2006, 53, 253-270.	1.4	34
11	Novel alkenone-producing strains of genus Isochrysis (Haptophyta) isolated from Canadian saline lakes show temperature sensitivity of alkenones and alkenoates. Organic Geochemistry, 2018, 121, 89-103.	1.8	31
12	Paleoenvironmental significance of compound-specific δ13C variations in n-alkanes in the Hongyuan peat sequence from southwest China over the last 13ka. Organic Geochemistry, 2010, 41, 491-497.	1.8	30
13	New insights into Holocene hydrology and temperature from lipid biomarkers in western Mediterranean alpine wetlands. Quaternary Science Reviews, 2020, 240, 106395.	3.0	28
14	Assessment and calibration of TEX86 paleothermometry in the Sea of Okhotsk and sub-polar North Pacific region: Implications for paleoceanography. Progress in Oceanography, 2014, 126, 254-266.	3.2	24
15	Paleoclimate variability in central Taiwan during the past 30Kyrs reflected by pollen, δ13CTOC, and n-alkane-δD records in a peat sequence from Toushe Basin. Journal of Asian Earth Sciences, 2013, 69, 166-176.	2.3	23
16	Influence of aerosol source regions and transport pathway on ÎƊ of terrestrial biomarkers in atmospheric aerosols from the East China Sea. Geochimica Et Cosmochimica Acta, 2013, 106, 164-176.	3.9	23
17	A 60ÂYear Record of Atmospheric Aerosol Depositions Preserved in a Highâ€Accumulation Dome Ice Core, Southeast Greenland. Journal of Geophysical Research D: Atmospheres, 2018, 123, 574-589. 	3.3	23
18	A large West Antarctic Ice Sheet explains early Neogene sea-level amplitude. Nature, 2021, 600, 450-455.	27.8	21

Osamu Seki

#	Article	IF	CITATIONS
19	Cycladophora davisiana (Radiolaria) in the Okhotsk Sea: A key for reconstructing glacial ocean conditions. Journal of Oceanography, 2006, 62, 639-648.	1.7	19
20	Spatial distributions of dicarboxylic acids, ï‰-oxoacids, pyruvic acid and α-dicarbonyls in the remote marine aerosols over the North Pacific. Marine Chemistry, 2015, 172, 1-11.	2.3	19
21	Mid-Holocene Antarctic sea-ice increase driven by marine ice sheet retreat. Climate of the Past, 2021, 17, 1-19.	3.4	18
22	Ice core records of levoglucosan and dehydroabietic and vanillic acids from Aurora Peak in Alaska since the 1660s: a proxy signal of biomass-burning activities in the North Pacific Rim. Atmospheric Chemistry and Physics, 2020, 20, 597-612.	4.9	15
23	Mid- to- late Holocene hydroclimatic changes on the Chinese Loess Plateau: evidence from n-alkanes from the sediments of Tianchi Lake. Journal of Paleolimnology, 2018, 60, 511-523.	1.6	14
24	Assessment of hydrogen isotopic compositions of <i>n</i> â€fatty acids as paleoclimate proxies in Lake Biwa sediments. Journal of Quaternary Science, 2012, 27, 884-890.	2.1	13
25	Dust deposition tracks late-Holocene shifts in monsoon activity and the increasing role of human disturbance in the Puna-Altiplano, northwest Argentina. Holocene, 2020, 30, 519-536.	1.7	13
26	Genomic identification of the long-chain alkenone producer in freshwater Lake Toyoni, Japan: implications for temperature reconstructions. Organic Geochemistry, 2018, 125, 189-195.	1.8	12
27	New Magnetostratigraphic Insights From Iceberg Alley on the Rhythms of Antarctic Climate During the Plioâ€Pleistocene. Paleoceanography and Paleoclimatology, 2021, 36, e2020PA003994.	2.9	12
28	Antiphased dust deposition and productivity in the Antarctic Zone over 1.5 million years. Nature Communications, 2022, 13, 2044.	12.8	11
29	Late Miocene changes in C ₃ , C ₄ and aquatic plant vegetation in the Indus River basin: evidence from leaf wax δ ¹³ C from Indus Fan sediments. Geological Magazine, 2020, 157, 979-988.	1.5	8
30	Historical Trends of Biogenic SOA Tracers in an Ice Core from Kamchatka Peninsula. Environmental Science and Technology Letters, 2016, 3, 351-358.	8.7	7
31	The significance of pyrogenic polycyclic aromatic hydrocarbons in Borneo peat core for the reconstruction of fire history. PLoS ONE, 2021, 16, e0256853.	2.5	7
32	Tropical Western Pacific Hydrology During the Last 6,000ÂYears Based on Wildfire Charcoal Records From Borneo. Geophysical Research Letters, 2021, 48, e2021GL093832.	4.0	6
33	Integrated Neogene biochemostratigraphy at DSDP Site 296 on the Kyushu–Palau Ridge in the western North Pacific. Newsletters on Stratigraphy, 2020, 53, 313-331.	1.2	6
34	<i>n</i> -Alkanes in Fresh Snow in Hokkaido, Japan: Implications for Ice Core Studies. Arctic, Antarctic, and Alpine Research, 2013, 45, 119-131.	1.1	5
35	Investigation of Adequate Calibration Methods for X-ray Fluorescence Core Scanning Element Count Data: A Case Study of a Marine Sediment Piston Core from the Gulf of Alaska. Journal of Marine Science and Engineering, 2021, 9, 540	2.6	5
36	Episodes of Early Pleistocene West Antarctic Ice Sheet Retreat Recorded by Iceberg Alley Sediments. Paleoceanography and Paleoclimatology, 2022, 37, .	2.9	5

Osamu Seki

#	Article	IF	CITATIONS
37	Cellulose Oxygen Isotopes of Sphagnum and Vascular Plants in a Peat Core Reveal Climate Change in Northern Japan Over the Past 2,000ÂYears. Geochemistry, Geophysics, Geosystems, 2021, 22, e2020GC009597.	2.5	2
38	Impact of Climate Change on Hunterâ€Fisherâ€Gatherer Cultures in Northern Japan Over the Past 4,400ÂYears. Geophysical Research Letters, 2022, 49, .	4.0	1
39	Dust correlation and oxygen isotope stratigraphy in the Southern Ocean over the last 450 kyrs: An Indian sector perspective. Quaternary Science Reviews, 2022, 286, 107508.	3.0	0