
Mio Kikuchi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5437611/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Lowâ€copy transgene detection using nested digital polymerase chain reaction for geneâ€doping control. Drug Testing and Analysis, 2022, 14, 382-387.	2.6	8
2	Identification of processed pseudogenes in the genome of Thoroughbred horses: Possibility of geneâ€doping detection considering the presence of pseudogenes. Animal Genetics, 2022, 53, 183-192.	1.7	6
3	Detection of non-targeted transgenes by whole-genome resequencing for gene-doping control. Gene Therapy, 2021, 28, 199-205.	4.5	12
4	Robustness of Digital PCR and Real-Time PCR in Transgene Detection for Gene-Doping Control. Analytical Chemistry, 2021, 93, 7133-7139.	6.5	14
5	Robustness of digital PCR and realâ€ŧime PCR against inhibitors in transgene detection for gene doping control in equestrian sports. Drug Testing and Analysis, 2021, 13, 1768-1775.	2.6	8
6	Rare and common variant discovery by whole-genome sequencing of 101 Thoroughbred racehorses. Scientific Reports, 2021, 11, 16057.	3.3	11
7	Design and storage stability of reference materials for microfluidic quantitative PCR-based equine gene doping tests. Journal of Equine Science, 2021, 32, 125-134.	0.8	2
8	Microfluidic Quantitative PCR Detection of 12 Transgenes from Horse Plasma for Gene Doping Control. Genes, 2020, 11, 457.	2.4	28
9	Whole-genome resequencing using genomic DNA extracted from horsehair roots for gene-doping control in horse sports. Journal of Equine Science, 2020, 31, 75-83.	0.8	6
10	Droplet Digital PCR Detection of the Erythropoietin Transgene from Horse Plasma and Urine for Gene-Doping Control. Genes, 2019, 10, 243.	2.4	33
11	Digital PCR detection of plasmid DNA administered to the skeletal muscle of a microminipig: a model case study for gene doping detection. BMC Research Notes, 2018, 11, 708.	1.4	21

Detection of phosphorothioated (PS) oligonucleotides in horse plasma using a product ion (m/z) Tj ETQq0 0 0 rgBT/Qverlock 10 Tf 50 3 1.4

A genome-wide association study for body weight in Japanese Thoroughbred racehorses candidate regions on chromosomes 3, 9, 15, and 18. Journal of Equine Science, 2017, 24	clarifies 8, 127-134. 0).8	19
---	----------------------------	-----	----