## Kazuhiro Takemoto

## List of Publications by Citations

Source: https://exaly.com/author-pdf/5437115/kazuhiro-takemoto-publications-by-citations.pdf

Version: 2024-04-04

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

62 906 28 17 h-index g-index citations papers 1,198 67 4.94 3.4 avg, IF L-index ext. citations ext. papers

| #  | Paper                                                                                                                                                                                                                        | IF  | Citations |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 62 | PREvalL, an integrative approach for inferring catalytic residues using sequence, structural, and network features in a machine-learning framework. <i>Journal of Theoretical Biology</i> , <b>2018</b> , 443, 125-137       | 2.3 | 106       |
| 61 | Identification of chemogenomic features from drug-target interaction networks using interpretable classifiers. <i>Bioinformatics</i> , <b>2012</b> , 28, i487-i494                                                           | 7.2 | 61        |
| 60 | Difficulty in inferring microbial community structure based on co-occurrence network approaches. <i>BMC Bioinformatics</i> , <b>2019</b> , 20, 329                                                                           | 3.6 | 53        |
| 59 | HSEpred: predict half-sphere exposure from protein sequences. <i>Bioinformatics</i> , <b>2008</b> , 24, 1489-97                                                                                                              | 7.2 | 42        |
| 58 | An automated system for evaluation of the potential functionome: MAPLE version 2.1.0. <i>DNA Research</i> , <b>2016</b> , 23, 467-475                                                                                        | 4.5 | 40        |
| 57 | FunSAV: predicting the functional effect of single amino acid variants using a two-stage random forest model. <i>PLoS ONE</i> , <b>2012</b> , 7, e43847                                                                      | 3.7 | 36        |
| 56 | Finding Minimum Reaction Cuts of Metabolic Networks Under a Boolean Model Using Integer Programming and Feedback Vertex Sets. <i>International Journal of Knowledge Discovery in Bioinformatics</i> , <b>2010</b> , 1, 14-31 |     | 35        |
| 55 | Correlation between structure and temperature in prokaryotic metabolic networks. <i>BMC Bioinformatics</i> , <b>2007</b> , 8, 303                                                                                            | 3.6 | 30        |
| 54 | MAPLE 2.3.0: an improved system for evaluating the functionomes of genomes and metagenomes. <i>Bioscience, Biotechnology and Biochemistry</i> , <b>2018</b> , 82, 1515-1517                                                  | 2.1 | 28        |
| 53 | An integrative computational framework based on a two-step random forest algorithm improves prediction of zinc-binding sites in proteins. <i>PLoS ONE</i> , <b>2012</b> , 7, e49716                                          | 3.7 | 23        |
| 52 | Universal adversarial attacks on deep neural networks for medical image classification. <i>BMC Medical Imaging</i> , <b>2021</b> , 21, 9                                                                                     | 2.9 | 23        |
| 51 | Human Impacts and Climate Change Influence Nestedness and Modularity in Food-Web and Mutualistic Networks. <i>PLoS ONE</i> , <b>2016</b> , 11, e0157929                                                                      | 3.7 | 22        |
| 50 | Heterogeneity in ecological mutualistic networks dominantly determines community stability. <i>Scientific Reports</i> , <b>2014</b> , 4, 5912                                                                                | 4.9 | 21        |
| 49 | Global COVID-19 transmission rate is influenced by precipitation seasonality and the speed of climate temperature warming                                                                                                    |     | 18        |
| 48 | Large-scale aggregation analysis of eukaryotic proteins reveals an involvement of intrinsically disordered regions in protein folding. <i>Scientific Reports</i> , <b>2018</b> , 8, 678                                      | 4.9 | 17        |
| 47 | Climatic seasonality may affect ecological network structure: food webs and mutualistic networks. <i>BioSystems</i> , <b>2014</b> , 121, 29-37                                                                               | 1.9 | 17        |
| 46 | Modular organization of cancer signaling networks is associated with patient survivability.<br>BioSystems, <b>2013</b> , 113, 149-54                                                                                         | 1.9 | 17        |

| 45 | Metabolic network modularity in archaea depends on growth conditions. PLoS ONE, 2011, 6, e25874                                                                                                       | 3.7   | 17 |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|----|
| 44 | Modeling for evolving biological networks with scale-free connectivity, hierarchical modularity, and disassortativity. <i>Mathematical Biosciences</i> , <b>2007</b> , 208, 454-68                    | 3.9   | 16 |
| 43 | Functional Classification of Uncultured "Candidatus Caldiarchaeum subterraneum" Using the Maple System. <i>PLoS ONE</i> , <b>2015</b> , 10, e0132994                                                  | 3.7   | 16 |
| 42 | Evolving networks by merging cliques. <i>Physical Review E</i> , <b>2005</b> , 72, 046116                                                                                                             | 2.4   | 14 |
| 41 | Vulnerability of deep neural networks for detecting COVID-19 cases from chest X-ray images to universal adversarial attacks. <i>PLoS ONE</i> , <b>2020</b> , 15, e0243963                             | 3.7   | 14 |
| 40 | Does habitat variability really promote metabolic network modularity?. <i>PLoS ONE</i> , <b>2013</b> , 8, e61348                                                                                      | 3.7   | 13 |
| 39 | Data integration aids understanding of butterfly-host plant networks. <i>Scientific Reports</i> , <b>2017</b> , 7, 43368                                                                              | 4.9   | 12 |
| 38 | Simple Iterative Method for Generating Targeted Universal Adversarial Perturbations. <i>Algorithms</i> , <b>2020</b> , 13, 268                                                                        | 1.8   | 12 |
| 37 | Current understanding of the formation and adaptation of metabolic systems based on network theory. <i>Metabolites</i> , <b>2012</b> , 2, 429-57                                                      | 5.6   | 12 |
| 36 | Metabolic network modularity arising from simple growth processes. <i>Physical Review E</i> , <b>2012</b> , 86, 03610                                                                                 | )Z.4  | 11 |
| 35 | Difference in the distribution pattern of substrate enzymes in the metabolic network of Escherichia coli, according to chaperonin requirement. <i>BMC Systems Biology</i> , <b>2011</b> , 5, 98       | 3.5   | 11 |
| 34 | Nested structure acquired through simple evolutionary process. <i>Journal of Theoretical Biology</i> , <b>2010</b> , 264, 782-6                                                                       | 2.3   | 11 |
| 33 | Origin of structural difference in metabolic networks with respect to temperature. <i>BMC Systems Biology</i> , <b>2008</b> , 2, 82                                                                   | 3.5   | 11 |
| 32 | Structure of n-clique networks embedded in a complex network. <i>Physica A: Statistical Mechanics and Its Applications</i> , <b>2007</b> , 380, 665-672                                               | 3.3   | 11 |
| 31 | Brain structural connectivity and neuroticism in healthy adults. Scientific Reports, 2018, 8, 16491                                                                                                   | 4.9   | 11 |
| 30 | A network biology-based approach to evaluating the effect of environmental contaminants on human interactome and diseases. <i>Ecotoxicology and Environmental Safety</i> , <b>2018</b> , 160, 316-327 | 7     | 11 |
| 29 | Metabolic networks are almost nonfractal: a comprehensive evaluation. <i>Physical Review E</i> , <b>2014</b> , 90, 022                                                                                | 280/2 | 9  |
| 28 | Heterogeneous distribution of metabolites across plant species. <i>Physica A: Statistical Mechanics and Its Applications</i> , <b>2009</b> , 388, 2771-2780                                           | 3.3   | 9  |

| 27 | Introduction to Complex Networks: Measures, Statistical Properties, and Models <b>2012</b> , 45-75                                                                                                                        |                 | 8 |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|---|
| 26 | Prediction of Protein Folding Rates from Structural Topology and Complex Network Properties. <i>IPSJ Transactions on Bioinformatics</i> , <b>2010</b> , 3, 40-53                                                          | 1.3             | 8 |
| 25 | Analysis of the Effect of Degree Correlation on the Size of Minimum Dominating Sets in Complex Networks. <i>PLoS ONE</i> , <b>2016</b> , 11, e0157868                                                                     | 3.7             | 8 |
| 24 | Limited influence of oxygen on the evolution of chemical diversity in metabolic networks. <i>Metabolites</i> , <b>2013</b> , 3, 979-92                                                                                    | 5.6             | 7 |
| 23 | Measuring Structural Robustness of Metabolic Networks under a Boolean Model Using Integer Programming and Feedback Vertex Sets <b>2009</b> ,                                                                              |                 | 6 |
| 22 | Network resilience of mutualistic ecosystems and environmental changes: an empirical study. <i>Royal Society Open Science</i> , <b>2018</b> , 5, 180706                                                                   | 3.3             | 6 |
| 21 | Decomposing the effects of ocean environments on predator-prey body-size relationships in food webs. <i>Royal Society Open Science</i> , <b>2018</b> , 5, 180707                                                          | 3.3             | 5 |
| 20 | The proportion of genes in a functional category is linked to mass-specific metabolic rate and lifespan. <i>Scientific Reports</i> , <b>2015</b> , 5, 10008                                                               | 4.9             | 5 |
| 19 | Importance of metabolic rate to the relationship between the number of genes in a functional category and body size in PetoX paradox for cancer. <i>Royal Society Open Science</i> , <b>2016</b> , 3, 160267              | 3.3             | 4 |
| 18 | Theoretical estimation of metabolic network robustness against multiple reaction knockouts using branching process approximation. <i>Physica A: Statistical Mechanics and Its Applications</i> , <b>2013</b> , 392, 5525- | ·5 <i>3</i> 335 | 4 |
| 17 | Global architecture of metabolite distributions across species and its formation mechanisms. <i>BioSystems</i> , <b>2010</b> , 100, 8-13                                                                                  | 1.9             | 4 |
| 16 | Revisiting the hypothesis of an energetic barrier to genome complexity between eukaryotes and prokaryotes. <i>Royal Society Open Science</i> , <b>2020</b> , 7, 191859                                                    | 3.3             | 4 |
| 15 | Exosomes in mammals with greater habitat variability contain more proteins and RNAs. <i>Royal Society Open Science</i> , <b>2017</b> , 4, 170162                                                                          | 3.3             | 3 |
| 14 | Habitat variability does not generally promote metabolic network modularity in flies and mammals. <i>BioSystems</i> , <b>2016</b> , 139, 46-54                                                                            | 1.9             | 3 |
| 13 | Analysis of the impact degree distribution in metabolic networks using branching process approximation. <i>Physica A: Statistical Mechanics and Its Applications</i> , <b>2012</b> , 391, 379-387                         | 3.3             | 3 |
| 12 | Limitations of a metabolic network-based reverse ecology method for inferring host-pathogen interactions. <i>BMC Bioinformatics</i> , <b>2017</b> , 18, 278                                                               | 3.6             | 3 |
| 11 | Heterogeneity of cells may explain allometric scaling of metabolic rate. <i>BioSystems</i> , <b>2015</b> , 130, 11-6                                                                                                      | 1.9             | 3 |
| 10 | The brain-derived neurotrophic factor Val66Met polymorphism increases segregation of structural correlation networks in healthy adult brains. <i>PeerJ</i> , <b>2020</b> , 8, e9632                                       | 3.1             | 3 |

## LIST OF PUBLICATIONS

| 9 | Systematic Protein Level Regulation via Degradation Machinery Induced by Genotoxic Drugs.<br>Journal of Proteome Research, <b>2016</b> , 15, 205-15                               | 5.6 | 2 |
|---|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|---|
| 8 | Natural Images Allow Universal Adversarial Attacks on Medical Image Classification Using Deep Neural Networks with Transfer Learning <i>Journal of Imaging</i> , <b>2022</b> , 8, | 3.1 | 2 |
| 7 | Ecological Networks <b>2019</b> , 1131-1141                                                                                                                                       |     | 1 |
| 6 | Finding Minimum Reaction Cuts of Metabolic Networks Under a Boolean Model240-258                                                                                                  |     | 1 |
| 5 | Backdoor Attacks to Deep Neural Network-Based System for COVID-19 Detection from Chest X-ray Images. <i>Applied Sciences (Switzerland)</i> , <b>2021</b> , 11, 9556               | 2.6 | 1 |
| 4 | Diversity of Dominant Soil Bacteria Increases with Warming Velocity at the Global Scale. <i>Diversity</i> , <b>2021</b> , 13, 120                                                 | 2.5 | 1 |
| 3 | Modeling for Evolving Biological Networks77-108                                                                                                                                   |     | 1 |
| 2 | Simple Black-Box Universal Adversarial Attacks on Deep Neural Networks for Medical Image Classification. <i>Algorithms</i> , <b>2022</b> , 15, 144                                | 1.8 | O |

Finding Minimum Reaction Cuts of Metabolic Networks Under a Boolean Model Using Integer Programming and Feedback Vertex Sets774-791