
Ingo Zebger

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5436732/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	From The Cover: Electrocatalytic hydrogen oxidation by an enzyme at high carbon monoxide or oxygen levels. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 16951-16954.	7.1	250
2	A unique iron-sulfur cluster is crucial for oxygen tolerance of a [NiFe]-hydrogenase. Nature Chemical Biology, 2011, 7, 310-318.	8.0	225
3	Tuning Product Selectivity for Aqueous CO ₂ Reduction with a Mn(bipyridine)-pyrene Catalyst Immobilized on a Carbon Nanotube Electrode. Journal of the American Chemical Society, 2017, 139, 14425-14435.	13.7	185
4	Spectroscopic Insights into the Oxygen-tolerant Membrane-associated [NiFe] Hydrogenase of Ralstonia eutropha H16. Journal of Biological Chemistry, 2009, 284, 16264-16276.	3.4	102
5	Solar Water Splitting with a Hydrogenase Integrated in Photoelectrochemical Tandem Cells. Angewandte Chemie - International Edition, 2018, 57, 10595-10599.	13.8	93
6	Reversible [4Fe-3S] cluster morphing in an O2-tolerant [NiFe] hydrogenase. Nature Chemical Biology, 2014, 10, 378-385.	8.0	85
7	Understanding the formation of bulk- and surface-active layered (oxy)hydroxides for water oxidation starting from a cobalt selenite precursor. Energy and Environmental Science, 2020, 13, 3607-3619.	30.8	77
8	Singlet Oxygen Microscope:  From Phase-Separated Polymers to Single Biological Cells. Accounts of Chemical Research, 2004, 37, 894-901.	15.6	75
9	Probing the Active Site of an O ₂ â€Tolerant NAD ⁺ â€Reducing [NiFe]â€Hydrogenase from <i>Ralstonia eutropha</i> H16 by Inâ€Situ EPR and FTIR Spectroscopy. Angewandte Chemie - International Edition, 2010, 49, 8026-8029.	13.8	65
10	Surfaceâ€enhanced vibrational spectroscopy for probing transient interactions of proteins with biomimetic interfaces: electric field effects on structure, dynamics and function of cytochrome <i>c</i> . FEBS Journal, 2011, 278, 1382-1390.	4.7	64
11	Redox-linked protein dynamics of cytochrome c probed by time-resolved surface enhanced infrared absorption spectroscopy. Physical Chemistry Chemical Physics, 2008, 10, 5276.	2.8	62
12	Spectroelectrochemical Study of the [NiFe] Hydrogenase from Desulfovibrio vulgaris Miyazaki F in Solution and Immobilized on Biocompatible Gold Surfaces. Journal of Physical Chemistry B, 2009, 113, 15344-15351.	2.6	61
13	Direct Optical Detection of Singlet Oxygen from a Single Cell¶. Photochemistry and Photobiology, 2004, 79, 319.	2.5	60
14	Resonance Raman Spectroscopy on [NiFe] Hydrogenase Provides Structural Insights into Catalytic Intermediates and Reactions. Journal of the American Chemical Society, 2014, 136, 9870-9873.	13.7	60
15	Vibrational Stark Effect of the Electric-Field Reporter 4-Mercaptobenzonitrile as a Tool for Investigating Electrostatics at Electrode/SAM/Solution Interfaces. International Journal of Molecular Sciences, 2012, 13, 7466-7482.	4.1	59
16	Overexpression, Isolation, and Spectroscopic Characterization of the Bidirectional [NiFe] Hydrogenase from Synechocystis sp. PCC 6803. Journal of Biological Chemistry, 2009, 284, 36462-36472.	3.4	54
17	Carbamoylphosphate serves as the source of CNâ^', but not of the intrinsic CO in the active site of the regulatory [NiFe]-hydrogenase fromRalstonia eutropha. FEBS Letters, 2007, 581, 3322-3326.	2.8	53
18	Resonance Raman Spectroscopy as a Tool to Monitor the Active Site of Hydrogenases. Angewandte Chemie - International Edition, 2013, 52, 5162-5165.	13.8	53

#	Article	IF	CITATIONS
19	A Universal Scaffold for Synthesis of the Fe(CN)2(CO) Moiety of [NiFe] Hydrogenase. Journal of Biological Chemistry, 2012, 287, 38845-38853.	3.4	49
20	SEIRA Spectroscopy of the Electrochemical Activation of an Immobilized [NiFe] Hydrogenase under Turnover and Nonâ€Turnover Conditions. Angewandte Chemie - International Edition, 2011, 50, 2632-2634.	13.8	48
21	The Hydrogenase Subcomplex of the NAD ⁺ â€Reducing [NiFe] Hydrogenase from <i>Ralstonia eutropha</i> – Insights into Catalysis and Redox Interconversions. European Journal of Inorganic Chemistry, 2011, 2011, 1067-1079.	2.0	47
22	On the explanation of the biphotonic processes in polyesters containing azobenzene moieties in the side chain. Macromolecular Rapid Communications, 1995, 16, 455-461.	3.9	46
23	Monitoring Catalysis of the Membraneâ€Bound Hydrogenase from <i>Ralstonia eutropha</i> H16 by Surfaceâ€Enhanced IR Absorption Spectroscopy. Angewandte Chemie - International Edition, 2009, 48, 611-613.	13.8	46
24	Photoorientation of a Liquid-Crystalline Polyester with Azobenzene Side Groups:Â Effects of Irradiation with Linearly Polarized Red Light after Photochemical Pretreatmentâ€. Macromolecules, 2003, 36, 9373-9382.	4.8	45
25	Concerted Action of Two Novel Auxiliary Proteins in Assembly of the Active Site in a Membrane-bound [NiFe] Hydrogenase. Journal of Biological Chemistry, 2009, 284, 2159-2168.	3.4	44
26	Host–Guest Chemistry Meets Electrocatalysis: Cucurbit[6]uril on a Au Surface as a Hybrid System in CO ₂ Reduction. ACS Catalysis, 2020, 10, 751-761.	11.2	43
27	Reduction of Unusual Iron-Sulfur Clusters in the H2-sensing Regulatory Ni-Fe Hydrogenase from Ralstonia eutropha H16. Journal of Biological Chemistry, 2005, 280, 19488-19495.	3.4	42
28	Determination of the Local Electric Field at Au/SAM Interfaces Using the Vibrational Stark Effect. Journal of Physical Chemistry C, 2017, 121, 22274-22285.	3.1	41
29	Simple and robust: The claims of protein sensing by molecularly imprinted polymers. Sensors and Actuators B: Chemical, 2021, 330, 129369.	7.8	41
30	Singlet Oxygen Images of Heterogeneous Samples:Â Examining the Effect of Singlet Oxygen Diffusion across the Interfacial Boundary in Phase-Separated Liquids and Polymers. Langmuir, 2003, 19, 8927-8933.	3.5	40
31	Caught in the H inact : Crystal Structure and Spectroscopy Reveal a Sulfur Bound to the Active Site of an O 2 â€stable State of [FeFe] Hydrogenase. Angewandte Chemie - International Edition, 2020, 59, 16786-16794.	13.8	40
32	Role of the HoxZ Subunit in the Electron Transfer Pathway of the Membrane-Bound [NiFe]-Hydrogenase from <i>Ralstonia eutropha</i> Immobilized on Electrodes. Journal of Physical Chemistry B, 2011, 115, 10368-10374.	2.6	39
33	Electrosynthesized MIPs for transferrin: Plastibodies or nano-filters?. Biosensors and Bioelectronics, 2018, 105, 29-35.	10.1	38
34	Shedding Light on Proton and Electron Dynamics in [FeFe] Hydrogenases. Journal of the American Chemical Society, 2020, 142, 5493-5497.	13.7	38
35	SERR-Spectroelectrochemical Study of a <i>cbb</i> ₃ Oxygen Reductase in a Biomimetic Construct. Journal of Physical Chemistry B, 2008, 112, 16952-16959.	2.6	35
36	Reversible Active Site Sulfoxygenation Can Explain the Oxygen Tolerance of a NAD ⁺ -Reducing [NiFe] Hydrogenase and Its Unusual Infrared Spectroscopic Properties. Journal of the American Chemical Society, 2015, 137, 2555-2564.	13.7	35

#	Article	IF	CITATIONS
37	A Singlet Oxygen Image with 2.5 μ m Resolution. Journal of Physical Chemistry A, 2002, 106, 8488-8490.	2.5	34
38	Side-chain Liquid Crystalline Polyesters for Optical Information Storage. Polymers for Advanced Technologies, 1996, 7, 768-776.	3.2	33
39	Oxygen Diffusion in Copolymers of Ethylene and Norbornene. Macromolecules, 2003, 36, 7189-7198.	4.8	33
40	[NiFe] and [FeS] Cofactors in the Membrane-Bound Hydrogenase of <i>Ralstonia eutropha</i> Investigated by X-ray Absorption Spectroscopy: Insights into O ₂ -Tolerant H ₂ Cleavage. Biochemistry, 2011, 50, 5858-5869.	2.5	33
41	Analyzing the catalytic processes of immobilized redox enzymes by vibrational spectroscopies. IUBMB Life, 2012, 64, 455-464.	3.4	33
42	Robust electrografted interfaces on metal oxides for electrocatalysis – an <i>in situ</i> spectroelectrochemical study. Journal of Materials Chemistry A, 2018, 6, 15200-15212.	10.3	33
43	Two ligand-binding sites in CO-reducing V nitrogenase reveal a general mechanistic principle. Science Advances, 2021, 7, .	10.3	33
44	Xâ€ray Crystallography and Vibrational Spectroscopy Reveal the Key Determinants of Biocatalytic Dihydrogen Cycling by [NiFe] Hydrogenases. Angewandte Chemie - International Edition, 2019, 58, 18710-18714.	13.8	32
45	Spectroscopic Observation of Calciumâ€Induced Reorientation of Cellobiose Dehydrogenase Immobilized on Electrodes and its Effect on Electrocatalytic Activity. ChemPhysChem, 2015, 16, 1960-1968.	2.1	31
46	Probing the Origin of the Metabolic Precursor of the CO Ligand in the Catalytic Center of [NiFe] Hydrogenase. Journal of Biological Chemistry, 2011, 286, 44937-44944.	3.4	30
47	Resonance Raman Spectroscopic Analysis of the [NiFe] Active Site and the Proximal [4Fe-3S] Cluster of an O ₂ -Tolerant Membrane-Bound Hydrogenase in the Crystalline State. Journal of Physical Chemistry B, 2015, 119, 13785-13796.	2.6	30
48	Electrochemical and Infrared Spectroscopic Studies Provide Insight into Reactions of the NiFe Regulatory Hydrogenase from <i>Ralstonia eutropha</i> with O ₂ and CO. Journal of Physical Chemistry B, 2015, 119, 13807-13815.	2.6	30
49	A soft molecular 2Fe–2As precursor approach to the synthesis of nanostructured FeAs for efficient electrocatalytic water oxidation. Chemical Science, 2020, 11, 11834-11842.	7.4	30
50	Orientation-Controlled Electrocatalytic Efficiency of an Adsorbed Oxygen-Tolerant Hydrogenase. PLoS ONE, 2015, 10, e0143101.	2.5	29
51	CO synthesized from the central one-carbon pool as source for the iron carbonyl in O2-tolerant [NiFe]-hydrogenase. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 14722-14726.	7.1	28
52	Nuclear resonance vibrational spectroscopy reveals the FeS cluster composition and active site vibrational properties of an O ₂ -tolerant NAD ⁺ -reducing [NiFe] hydrogenase. Chemical Science, 2015, 6, 1055-1060.	7.4	27
53	The structure of the Ni-Fe site in the isolated HoxC subunit of the hydrogen-sensing hydrogenase fromRalstonia eutropha. FEBS Letters, 2005, 579, 4287-4291.	2.8	26
54	In Situ Spectroelectrochemical Studies into the Formation and Stability of Robust Diazonium-Derived Interfaces on Gold Electrodes for the Immobilization of an Oxygen-Tolerant Hydrogenase. ACS Applied Materials & Interfaces, 2018, 10, 23380-23391.	8.0	23

#	Article	IF	CITATIONS
55	Effect of the Protonation Degree of a Self-Assembled Monolayer on the Immobilization Dynamics of a [NiFe] Hydrogenase. Langmuir, 2013, 29, 673-682.	3.5	22
56	When the inhibitor tells more than the substrate: the cyanide-bound state of a carbon monoxide dehydrogenase. Chemical Science, 2016, 7, 3162-3171.	7.4	22
57	Oxygen Diffusion in Bilayer Polymer Films. Journal of Physical Chemistry B, 2003, 107, 13885-13891.	2.6	21
58	An Sâ€Oxygenated [NiFe] Complex Modelling Sulfenate Intermediates of an O ₂ â€Tolerant Hydrogenase. Angewandte Chemie - International Edition, 2017, 56, 2208-2211.	13.8	21
59	Revealing the Absolute Configuration of the CO and CN ^{â^'} Ligands at the Active Site of a [NiFe] Hydrogenase. ChemPhysChem, 2012, 13, 3852-3856.	2.1	20
60	The large subunit of the regulatory [NiFe]-hydrogenase fromRalstonia eutropha– a minimal hydrogenase?. Chemical Science, 2020, 11, 5453-5465.	7.4	20
61	Investigation of the NADH/NAD + ratio in Ralstonia eutropha using the fluorescence reporter protein Peredox. Biochimica Et Biophysica Acta - Bioenergetics, 2017, 1858, 86-94.	1.0	19
62	Hydroxy-bridged resting states of a [NiFe]-hydrogenase unraveled by cryogenic vibrational spectroscopy and DFT computations. Chemical Science, 2021, 12, 2189-2197.	7.4	17
63	Insights into the structure of the active site of the O2-tolerant membrane bound [NiFe] hydrogenase of R. eutropha H16 by molecular modelling. Physical Chemistry Chemical Physics, 2011, 13, 16146.	2.8	16
64	Impact of the Iron–Sulfur Cluster Proximal to the Active Site on the Catalytic Function of an O ₂ -Tolerant NAD ⁺ -Reducing [NiFe]-Hydrogenase. Biochemistry, 2015, 54, 389-403.	2.5	16
65	O ₂ -Tolerant H ₂ Activation by an Isolated Large Subunit of a [NiFe] Hydrogenase. Biochemistry, 2018, 57, 5339-5349.	2.5	16
66	Unusual structures and unknown roles of FeS clusters in metalloenzymes seen from a resonance Raman spectroscopic perspective. Coordination Chemistry Reviews, 2022, 452, 214287.	18.8	16
67	Exploring Structure and Function of Redox Intermediates in [NiFe]â€Hydrogenases by an Advanced Experimental Approach for Solvated, Lyophilized and Crystallized Metalloenzymes. Angewandte Chemie - International Edition, 2021, 60, 15854-15862.	13.8	15
68	Enzymatic and spectroscopic properties of a thermostable [NiFe]‑hydrogenase performing H2-driven NAD+-reduction in the presence of O2. Biochimica Et Biophysica Acta - Bioenergetics, 2018, 1859, 8-18.	1.0	14
69	Catalytic Activity and Proton Translocation of Reconstituted Respiratory Complex I Monitored by Surface-Enhanced Infrared Absorption Spectroscopy. Langmuir, 2018, 34, 5703-5711.	3.5	13
70	<i>In Vitro</i> Assembly as a Tool to Investigate Catalytic Intermediates of [NiFe]-Hydrogenase. ACS Catalysis, 2020, 10, 13890-13894.	11.2	13
71	"Out of Pocket―Protein Binding—A Dilemma of Epitope Imprinted Polymers Revealed for Human Hemoglobin. Chemosensors, 2021, 9, 128.	3.6	13
72	Protein–Protein Complex Formation Affects the Ni–Fe and Fe–S Centers in the H ₂ â€&ensing Regulatory Hydrogenase from <i>Ralstonia eutropha</i> H16. ChemPhysChem, 2010, 11, 1297-1306.	2.1	11

#	Article	IF	CITATIONS
73	Insights in electrosynthesis, target binding, and stability of peptide-imprinted polymer nanofilms. Electrochimica Acta, 2021, 381, 138236.	5.2	11
74	lmpact of Amino Acid Substitutions near the Catalytic Site on the Spectral Properties of an O ₂ â€Tolerant Membraneâ€Bound [NiFe] Hydrogenase. ChemPhysChem, 2010, 11, 1215-1224.	2.1	10
75	Rubredoxin-related Maturation Factor Guarantees Metal Cofactor Integrity during Aerobic Biosynthesis of Membrane-bound [NiFe] Hydrogenase. Journal of Biological Chemistry, 2014, 289, 7982-7993.	3.4	10
76	Metal-induced histidine deprotonation in biocatalysis? Experimental and theoretical insights into superoxide reductase. RSC Advances, 2014, 4, 54091-54095.	3.6	10
77	Carbon Monoxide Dehydrogenase Reduces Cyanate to Cyanide. Angewandte Chemie - International Edition, 2017, 56, 7398-7401.	13.8	10
78	Comparison of molybdenum and rhenium oxo bis-pyrazine-dithiolene complexes – in search of an alternative metal centre for molybdenum cofactor models. Dalton Transactions, 2019, 48, 2701-2714.	3.3	10
79	Local Electric Field Changes during the Photoconversion of the Bathy Phytochrome Agp2. Biochemistry, 2021, 60, 2967-2977.	2.5	10
80	An Intermetallic CaFe ₆ Ge ₆ Approach to Unprecedented Caâ^'Feâ^'O Electrocatalyst for Efficient Alkaline Oxygen Evolution Reaction. ChemCatChem, 2022, 14, .	3.7	10
81	The influence of substituents on the orientational behaviour of novel azobenzene sideâ€chain polyesters. Macromolecular Symposia, 1995, 94, 159-170.	0.7	9
82	Ultraviolet/visible spectroscopy of molten slags and glasses (up to 1600°C). Journal of Non-Crystalline Solids, 2001, 282, 30-40.	3.1	9
83	Characterization of Frex as an NADH sensor for in vivo applications in the presence of NAD+ and at various pH values. Photosynthesis Research, 2017, 133, 305-315.	2.9	9
84	Combining Spectroscopy and Theory to Evaluate Structural Models of Metalloenzymes: A Case Study on the Soluble [NiFe] Hydrogenase from <i>Ralstonia eutropha</i> . ChemPhysChem, 2013, 14, 185-191.	2.1	8
85	Ultraviolet/visible reflection spectroscopy of molten and glassy silicates (MeOn–CaO–SiO2) and phosphates (MeOn–CaO–P2O5), Men+=Fe3+, Mn2+. Journal of Non-Crystalline Solids, 2005, 351, 3443-3457.	3.1	7
86	Xâ€ray Crystallography and Vibrational Spectroscopy Reveal the Key Determinants of Biocatalytic Dihydrogen Cycling by [NiFe] Hydrogenases. Angewandte Chemie, 2019, 131, 18883-18887.	2.0	6
87	Kristallstruktur und Spektroskopie offenbaren einen Schwefelâ€Liganden am aktiven Zentrum einer O 2 â€stabilen [FeFe]â€Hydrogenase. Angewandte Chemie, 2020, 132, 16930.	2.0	6
88	Electrografted Interfaces on Metal Oxide Electrodes for Enzyme Immobilization and Bioelectrocatalysis. ChemElectroChem, 2021, 8, 1329-1336.	3.4	6
89	Domain motions and electron transfer dynamics in 2Fe-superoxide reductase. Physical Chemistry Chemical Physics, 2016, 18, 23053-23066.	2.8	5
90	High-Yield Production of Catalytically Active Regulatory [NiFe]-Hydrogenase From Cupriavidus necator in Escherichia coli. Frontiers in Microbiology, 2022, 13, 894375.	3.5	5

#	Article	IF	CITATIONS
91	Resonance Raman spectroscopic analysis of the iron–sulfur cluster redox chain of the Ralstonia eutropha membraneâ€bound [NiFe]â€hydrogenase. Journal of Raman Spectroscopy, 0, , .	2.5	4
92	Structure of Liquid Slags and Ultraviolet/Visible Reflection Spectroscopy of Molten and Glassy Silicates (Fe ₂ O ₃ aO‧iO ₂). Steel Research International, 2004, 75, 632-644.	1.8	1
93	Molecular Details on Multiple Cofactor Containing Redox Metalloproteins Revealed by Infrared and Resonance Raman Spectroscopies. Molecules, 2021, 26, 4852.	3.8	1
94	Application of UV/VISâ€Reflection Spectroscopy for Determination of the Oxidation State of Liquid Slags with High Fe ³⁺ ontents. Steel Research International, 2007, 78, 685-692.	1.8	0
95	Ein neuer Aufbau zur Untersuchung der Struktur und Funktion von solvatisierten, lyophilisierten und kristallinen Metalloenzymen – veranschaulicht anhand von [NiFe]â€Hydrogenasen. Angewandte Chemie, 2021, 133, 15988-15996.	2.0	0
96	Frontispiz: Ein neuer Aufbau zur Untersuchung der Struktur und Funktion von solvatisierten, lyophilisierten und kristallinen Metalloenzymen – veranschaulicht anhand von [NiFe]â€Hydrogenasen. Angewandte Chemie, 2021, 133, .	2.0	0
97	Frontispiece: Exploring Structure and Function of Redox Intermediates in [NiFe]â€Hydrogenases by an Advanced Experimental Approach for Solvated, Lyophilized and Crystallized Metalloenzymes. Angewandte Chemie - International Edition, 2021, 60, .	13.8	0