

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5436663/publications.pdf Version: 2024-02-01

Vinili

#	Article	IF	CITATIONS
1	Opposite Roles of Salicylic Acid Receptors NPR1 and NPR3/NPR4 in Transcriptional Regulation of Plant Immunity. Cell, 2018, 173, 1454-1467.e15.	13.5	510
2	A Gain-of-Function Mutation in a Plant Disease Resistance Gene Leads to Constitutive Activation of Downstream Signal Transduction Pathways in suppressor of npr1-1, constitutive 1. Plant Cell, 2003, 15, 2636-2646.	3.1	446
3	Knockout Analysis of Arabidopsis Transcription Factors TGA2, TGA5, and TGA6 Reveals Their Redundant and Essential Roles in Systemic Acquired Resistance. Plant Cell, 2003, 15, 2647-2653.	3.1	444
4	Control of salicylic acid synthesis and systemic acquired resistance by two members of a plant-specific family of transcription factors. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 18220-18225.	3.3	344
5	Salicylic acid: biosynthesis, perception, and contributions to plant immunity. Current Opinion in Plant Biology, 2019, 50, 29-36.	3.5	334
6	Regulation of Cell Death and Innate Immunity by Two Receptor-like Kinases in Arabidopsis. Cell Host and Microbe, 2009, 6, 34-44.	5.1	328
7	ETHYLENE INSENSITIVE3 and ETHYLENE INSENSITIVE3-LIKE1 Repress <i>SALICYLIC ACID INDUCTION DEFICIENT2</i> Expression to Negatively Regulate Plant Innate Immunity in <i>Arabidopsis</i> Â Â. Plant Cell, 2009, 21, 2527-2540.	3.1	267
8	Activation of an EDS1-Mediated R-Gene Pathway in the snc1 Mutant Leads to Constitutive, NPR1-Independent Pathogen Resistance. Molecular Plant-Microbe Interactions, 2001, 14, 1131-1139.	1.4	252
9	Identification and Cloning of a Negative Regulator of Systemic Acquired Resistance, SNI1, through a Screen for Suppressors of npr1-1. Cell, 1999, 98, 329-339.	13.5	240
10	Nuclear Pore Complex Component MOS7/Nup88 Is Required for Innate Immunity and Nuclear Accumulation of Defense Regulators in <i>Arabidopsis</i> Â Â. Plant Cell, 2009, 21, 2503-2516.	3.1	233
11	A Putative Nucleoporin 96 Is Required for Both Basal Defense and Constitutive Resistance Responses Mediated by suppressor of npr1-1,constitutive 1 Â. Plant Cell, 2005, 17, 1306-1316.	3.1	211
12	Negative regulation of defense responses in Arabidopsis by twoNPR1paralogs. Plant Journal, 2006, 48, 647-656.	2.8	206
13	Arabidopsis resistance protein SNC1 activates immune responses through association with a transcriptional corepressor. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 13960-13965.	3.3	205
14	Stability of plant immune-receptor resistance proteins is controlled by SKP1-CULLIN1-F-box (SCF)-mediated protein degradation. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 14694-14699.	3.3	205
15	A fast neutron deletion mutagenesis-based reverse genetics system for plants. Plant Journal, 2001, 27, 235-242.	2.8	200
16	Salicylic Acid: Biosynthesis and Signaling. Annual Review of Plant Biology, 2021, 72, 761-791.	8.6	193
17	Differential regulation of TNLâ€mediated immune signaling by redundant helper CNLs. New Phytologist, 2019, 222, 938-953.	3.5	186
18	Activation of TIR signalling boosts pattern-triggered immunity. Nature, 2021, 598, 500-503.	13.7	176

#	Article	IF	CITATIONS
19	Heterotrimeric G Proteins Serve as a Converging Point in Plant Defense Signaling Activated by Multiple Receptor-Like Kinases Â. Plant Physiology, 2013, 161, 2146-2158.	2.3	169
20	NOT2 Proteins Promote Polymerase II–Dependent Transcription and Interact with Multiple MicroRNA Biogenesis Factors in <i>Arabidopsis</i> Â Â. Plant Cell, 2013, 25, 715-727.	3.1	147
21	NLRs in plants. Current Opinion in Immunology, 2015, 32, 114-121.	2.4	146
22	Regulation of plant innate immunity by three proteins in a complex conserved across the plant and animal kingdoms. Genes and Development, 2007, 21, 1484-1493.	2.7	141
23	Two Prp19-Like U-Box Proteins in the MOS4-Associated Complex Play Redundant Roles in Plant Innate Immunity. PLoS Pathogens, 2009, 5, e1000526.	2.1	141
24	Plant NLRs: The Whistleblowers of Plant Immunity. Plant Communications, 2020, 1, 100016.	3.6	126
25	Characterization of a Pipecolic Acid Biosynthesis Pathway Required for Systemic Acquired Resistance. Plant Cell, 2016, 28, 2603-2615.	3.1	121
26	Activation of Plant Immune Responses by a Gain-of-Function Mutation in an Atypical Receptor-Like Kinase Â. Plant Physiology, 2010, 153, 1771-1779.	2.3	120
27	SRFR1 Negatively Regulates Plant NB-LRR Resistance Protein Accumulation to Prevent Autoimmunity. PLoS Pathogens, 2010, 6, e1001111.	2.1	112
28	MAP kinase signalling: interplays between plant PAMP- and effector-triggered immunity. Cellular and Molecular Life Sciences, 2018, 75, 2981-2989.	2.4	105
29	Two N-Terminal Acetyltransferases Antagonistically Regulate the Stability of a Nod-Like Receptor in Arabidopsis. Plant Cell, 2015, 27, 1547-1562.	3.1	102
30	The Ankyrin-Repeat Transmembrane Protein BDA1 Functions Downstream of the Receptor-Like Protein SNC2 to Regulate Plant Immunity. Plant Physiology, 2012, 159, 1857-1865.	2.3	98
31	<scp>TNL</scp> â€mediated immunity in <i><scp>A</scp>rabidopsis</i> requires complex regulation of the redundant <i><scp>ADR</scp>1</i> gene family. New Phytologist, 2016, 210, 960-973.	3.5	98
32	Biosynthesis and Regulation of Salicylic Acid and N-Hydroxypipecolic Acid in Plant Immunity. Molecular Plant, 2020, 13, 31-41.	3.9	98
33	The ubiquitin pathway is required for innate immunity in Arabidopsis. Plant Journal, 2007, 49, 540-551.	2.8	95
34	<i>Arabidopsis snc2-1D</i> Activates Receptor-Like Protein-Mediated Immunity Transduced through WRKY70. Plant Cell, 2010, 22, 3153-3163.	3.1	95
35	Mighty Dwarfs: Arabidopsis Autoimmune Mutants and Their Usages in Genetic Dissection of Plant Immunity. Frontiers in Plant Science, 2016, 7, 1717.	1.7	95
36	Regulation of Transcription of Nucleotide-Binding Leucine-Rich Repeat-Encoding Genes SNC1 and RPP4 via H3K4 Trimethylation. Plant Physiology, 2013, 162, 1694-1705.	2.3	93

#	Article	IF	CITATIONS
37	A role for the RNA-binding protein MOS2 in microRNA maturation in Arabidopsis. Cell Research, 2013, 23, 645-657.	5.7	91
38	Redundant CAMTA Transcription Factors Negatively Regulate the Biosynthesis of Salicylic Acid and N-Hydroxypipecolic Acid by Modulating the Expression of SARD1 and CBP60g. Molecular Plant, 2020, 13, 144-156.	3.9	88
39	Diverse Roles of the Salicylic Acid Receptors NPR1 and NPR3/NPR4 in Plant Immunity. Plant Cell, 2020, 32, 4002-4016.	3.1	87
40	The cyclin L homolog MOS12 and the MOS4â€associated complex are required for the proper splicing of plant <i>resistance</i> genes. Plant Journal, 2012, 70, 916-928.	2.8	86
41	MOS2, a Protein Containing G-Patch and KOW Motifs, Is Essential for Innate Immunity in Arabidopsis thaliana. Current Biology, 2005, 15, 1936-1942.	1.8	84
42	Transportin-SR Is Required for Proper Splicing of Resistance Genes and Plant Immunity. PLoS Genetics, 2011, 7, e1002159.	1.5	83
43	Salicylic Acid: A Double-Edged Sword for Programed Cell Death in Plants. Frontiers in Plant Science, 2018, 9, 1133.	1.7	82
44	The Arabidopsis MOS4-Associated Complex Promotes MicroRNA Biogenesis and Precursor Messenger RNA Splicing. Plant Cell, 2017, 29, 2626-2643.	3.1	81
45	Stronger When Together: Clustering of Plant NLR Disease resistance Genes. Trends in Plant Science, 2019, 24, 688-699.	4.3	81
46	<scp>HSP</scp> 90s are required for <scp>NLR</scp> immune receptor accumulation in Arabidopsis. Plant Journal, 2014, 79, 427-439.	2.8	80
47	Regulation of the Expression of Plant <i>Resistance</i> Gene <i>SNC1</i> by a Protein with a Conserved BAT2 Domain Â. Plant Physiology, 2010, 153, 1425-1434.	2.3	78
48	Putative members of the Arabidopsis Nup107â€160 nuclear pore subâ€complex contribute to pathogen defense. Plant Journal, 2012, 70, 796-808.	2.8	74
49	NLR-Associating Transcription Factor bHLH84 and Its Paralogs Function Redundantly in Plant Immunity. PLoS Pathogens, 2014, 10, e1004312.	2.1	71
50	<i>Arabidopsis </i> <scp>HSP</scp> 90 protein modulates <scp>RPP</scp> 4â€mediated temperatureâ€dependent cell death and defense responses. New Phytologist, 2014, 202, 1320-1334.	3.5	69
51	E3 ligase SAUL1 serves as a positive regulator of PAMPâ€ŧriggered immunity and its homeostasis is monitored by immune receptor SOC3. New Phytologist, 2017, 215, 1516-1532.	3.5	69
52	Mitochondrial AtPAM16 is required for plant survival and the negative regulation of plant immunity. Nature Communications, 2013, 4, 2558.	5.8	64
53	Ubiquitination in NB-LRR-mediated immunity. Current Opinion in Plant Biology, 2012, 15, 392-399.	3.5	62
54	A Novel Role for Protein Farnesylation in Plant Innate Immunity Â. Plant Physiology, 2008, 148, 348-357.	2.3	61

#	Article	IF	CITATIONS
55	MOS11: A New Component in the mRNA Export Pathway. PLoS Genetics, 2010, 6, e1001250.	1.5	59
56	An E4 Ligase Facilitates Polyubiquitination of Plant Immune Receptor Resistance Proteins in <i>Arabidopsis</i> Â. Plant Cell, 2014, 26, 485-496.	3.1	57
57	TIR signal promotes interactions between lipase-like proteins and ADR1-L1 receptor and ADR1-L1 oligomerization. Plant Physiology, 2021, 187, 681-686.	2.3	57
58	Arabidopsis <i><scp>UBC</scp>13</i> differentially regulates two programmed cell death pathways in responses to pathogen and lowâ€ŧemperature stress. New Phytologist, 2019, 221, 919-934.	3.5	56
59	Plant TRAF Proteins Regulate NLR Immune Receptor Turnover. Cell Host and Microbe, 2016, 19, 204-215.	5.1	55
60	Molecular innovations in plant TIR-based immunity signaling. Plant Cell, 2022, 34, 1479-1496.	3.1	55
61	Plant NLRs: From discovery to application. Plant Science, 2019, 279, 3-18.	1.7	52
62	Two Putative RNA-Binding Proteins Function with Unequal Genetic Redundancy in the MOS4-Associated Complex Â. Plant Physiology, 2010, 154, 1783-1793.	2.3	50
63	Autoimmunity conferred by chs3-2D relies on CSA1, its adjacent TNL-encoding neighbour. Scientific Reports, 2015, 5, 8792.	1.6	47
64	Mutations in an Atypical TIR-NB-LRR-LIM Resistance Protein Confer Autoimmunity. Frontiers in Plant Science, 2011, 2, 71.	1.7	45
65	P-Loop-Dependent NLR SNC1 Can Oligomerize and Activate Immunity in the Nucleus. Molecular Plant, 2014, 7, 1801-1804.	3.9	45
66	Membrane-Associated Ubiquitin Ligase SAUL1 Suppresses Temperature- and Humidity-Dependent Autoimmunity in <i>Arabidopsis</i> . Molecular Plant-Microbe Interactions, 2016, 29, 69-80.	1.4	43
67	Individual components of paired typical NLR immune receptors are regulated by distinct E3 ligases. Nature Plants, 2018, 4, 699-710.	4.7	43
68	<scp>TIR</scp> â€ <scp>NB</scp> â€ <scp>LRR</scp> immune receptor <scp>SOC</scp> 3 pairs with truncated <scp>TIR</scp> â€ <scp>NB</scp> protein <scp>CHS</scp> 1 or <scp>TN</scp> 2 to monitor the homeostasis of E3 ligase <scp>SAUL</scp> 1. New Phytologist, 2019, 221, 2054-2066.	3.5	43
69	AtCDC48A is involved in the turnover of an NLR immune receptor. Plant Journal, 2016, 88, 294-305.	2.8	38
70	Plant E3 ligases <scp>SNIPER</scp> 1 and <scp>SNIPER</scp> 2 broadly regulate the homeostasis of sensor <scp>NLR</scp> immune receptors. EMBO Journal, 2020, 39, e104915.	3.5	38
71	The Chromatin Remodeler SPLAYED Negatively Regulates SNC1-Mediated Immunity. Plant and Cell Physiology, 2015, 56, 1616-1623.	1.5	35
72	The Mediator kinase module serves as a positive regulator of salicylic acid accumulation and systemic acquired resistance. Plant Journal, 2019, 98, 842-852.	2.8	31

#	Article	IF	CITATIONS
73	Regulation of plant immune receptor accumulation through translational repression by a glycine-tyrosine-phenylalanine (GYF) domain protein. ELife, 2017, 6, .	2.8	31
74	Dissecting plant defence signal transduction: modifiers ofsnc1inArabidopsisâ€. Canadian Journal of Plant Pathology, 2010, 32, 35-42.	0.8	27
75	Arabidopsis CALMODULIN-BINDING PROTEIN 60b plays dual roles in plant immunity. Plant Communications, 2021, 2, 100213.	3.6	25
76	Regulation of Plant Immunity by the Proteasome. International Review of Cell and Molecular Biology, 2019, 343, 37-63.	1.6	22
77	The N-terminally truncated helper NLR <i>NRG1C</i> antagonizes immunity mediated by its full-length neighbors <i>NRG1A</i> and <i>NRG1B</i> . Plant Cell, 2022, 34, 1621-1640.	3.1	22
78	SCF ^{SNIPER4} controls the turnover of two redundant <scp>TRAF</scp> proteins in plant immunity. Plant Journal, 2018, 95, 504-515.	2.8	21
79	SUSA2 is an F-box protein required for autoimmunity mediated by paired NLRs SOC3-CHS1 and SOC3-TN2. Nature Communications, 2020, 11, 5190.	5.8	19
80	Protein Immunoprecipitation Using Nicotiana benthamiana Transient Expression System. Bio-protocol, 2015, 5, .	0.2	19
81	Engineering plant disease resistance against biotrophic pathogens. Current Opinion in Plant Biology, 2021, 60, 101987.	3.5	18
82	A partial loss-of-function mutation in an Arabidopsis RNA polymerase III subunit leads to pleiotropic defects. Journal of Experimental Botany, 2016, 67, 2219-2230.	2.4	17
83	<i>Arabidopsis</i> TAF15b Localizes to RNA Processing Bodies and Contributes to <i>snc1</i> -Mediated Autoimmunity. Molecular Plant-Microbe Interactions, 2016, 29, 247-257.	1.4	15
84	Identification of Methylosome Components as Negative Regulators of Plant Immunity Using Chemical Genetics. Molecular Plant, 2016, 9, 1620-1633.	3.9	15
85	Negative regulation of resistance proteinâ€mediated immunity by master transcription factors SARD1 and CBP60g. Journal of Integrative Plant Biology, 2018, 60, 1023-1027.	4.1	14
86	<i>Du13</i> encodes a C ₂ H ₂ zincâ€finger protein that regulates <i>Wx^b</i> preâ€mRNA splicing and microRNA biogenesis in rice endosperm. Plant Biotechnology Journal, 2022, 20, 1387-1401.	4.1	14
87	SCF ^{SNIPER7} controls protein turnover of unfoldase CDC48A to promote plant immunity. New Phytologist, 2021, 229, 2795-2811.	3.5	13
88	A Forward Genetic Screen in <i>Sclerotinia sclerotiorum</i> Revealed the Transcriptional Regulation of Its Sclerotial Melanization Pathway. Molecular Plant-Microbe Interactions, 2022, 35, 244-256.	1.4	13
89	Identification of Components in Disease-Resistance Signaling in <i>Arabidopsis</i> by Map-Based Cloning. , 2007, 354, 69-78.		11
90	MOS2 has redundant function with its homolog MOS2H and is required for proper splicing of <i>SNC1</i> . Plant Signaling and Behavior, 2013, 8, e25372.	1.2	11

#	Article	IF	CITATIONS
91	The Evolutionarily Conserved E3 Ubiquitin Ligase AtCHIP Contributes to Plant Immunity. Frontiers in Plant Science, 2016, 7, 309.	1.7	10
92	Enzyme formation by immune receptors. Science, 2020, 370, 1163-1164.	6.0	10
93	PLEIOTROPIC REGULATORY LOCUS 2 exhibits unequal genetic redundancy with its homolog PRL1. Plant and Cell Physiology, 2012, 53, 1617-1626.	1.5	8
94	The proteasome regulator PTRE1 contributes to the turnover of SNC1 immune receptor. Molecular Plant Pathology, 2019, 20, 1566-1573.	2.0	7
95	Suppressor Screens in Arabidopsis. Methods in Molecular Biology, 2016, 1363, 1-8.	0.4	7
96	N-terminal modifications contribute to flowering time and immune response regulations. Plant Signaling and Behavior, 2015, 10, e1073874.	1.2	5
97	The putative kinase substrate MUSE7 negatively impacts the accumulation of <scp>NLR</scp> proteins. Plant Journal, 2017, 89, 1174-1183.	2.8	4
98	A structural view of salicylic acid perception. Nature Plants, 2020, 6, 1197-1198.	4.7	4
99	Indirect recognition of pathogen effectors by NLRs. Essays in Biochemistry, 2022, 66, 485-500.	2.1	4
100	The ARRE RING-Type E3 Ubiquitin Ligase Negatively Regulates Cuticular Wax Biosynthesis in Arabidopsis thaliana by Controlling ECERIFERUM1 and ECERIFERUM3 Protein Levels. Frontiers in Plant Science, 2021, 12, 752309.	1.7	3
101	TIR domains as two-tiered enzymes to activate plant immunity. Cell, 2022, 185, 2208-2209.	13.5	2
102	Whole-Seedling-Based in Arabidopsis. Methods in Molecular Biology, 2021, 2213, 29-37.	0.4	1
103	Activation of NLR-Mediated Autoimmunity in Arabidopsis Early in Short Days 4 Mutant. Frontiers in Plant Science, 2022, 13, .	1.7	1
104	HSP90 Contributes to chs3-2D-Mediated Autoimmunity. Frontiers in Plant Science, 2022, 13, .	1.7	0