Jose Ayte

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5436593/publications.pdf

Version: 2024-02-01

214527 172207 2,495 72 29 47 h-index citations g-index papers 74 74 74 2294 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	TOR and MAP kinase pathways synergistically regulate autophagy in response to nutrient depletion in fission yeast. Autophagy, 2022, 18, 375-390.	4.3	22
2	Expression of Huntingtin and TDP-43 Derivatives in Fission Yeast Can Cause Both Beneficial and Toxic Effects. International Journal of Molecular Sciences, 2022, 23, 3950.	1.8	2
3	Native RNA sequencing in fission yeast reveals frequent alternative splicing isoforms. Genome Research, 2022, 32, 1215-1227.	2.4	5
4	Stress-induced cell depolarization through the MAP kinase–Cdc42 axis. Trends in Cell Biology, 2022, , .	3.6	1
5	The Mitochondria-to-Cytosol H2O2 Gradient Is Caused by Peroxiredoxin-Dependent Cytosolic Scavenging. Antioxidants, 2021, 10, 731.	2.2	18
6	Cross talk between the upstream exon-intron junction and Prp2 facilitates splicing of non-consensus introns. Cell Reports, 2021, 37, 109893.	2.9	3
7	Stress-dependent inhibition of polarized cell growth through unbalancing the GEF/GAP regulation of Cdc42. Cell Reports, 2021, 37, 109951.	2.9	8
8	SWI/SNF and RSC remodeler complexes bind to MBF-dependent genes. Cell Cycle, 2021, 20, 2652-2661.	1.3	1
9	Evolution of the Early Spliceosomal Complex—From Constitutive to Regulated Splicing. International Journal of Molecular Sciences, 2021, 22, 12444.	1.8	4
10	Identification of ubiquitin-proteasome system components affecting the degradation of the transcription factor Pap1. Redox Biology, 2020, 28, 101305.	3.9	7
11	Phosphorylation of the Transcription Factor Atf1 at Multiple Sites by the MAP Kinase Sty1 Controls Homologous Recombination and Transcription. Journal of Molecular Biology, 2020, 432, 5430-5446.	2.0	6
12	The Hsp40 Mas5 Connects Protein Quality Control and the General Stress Response through the Thermo-sensitive Pyp1. IScience, 2020, 23, 101725.	1.9	7
13	Chaperone-Facilitated Aggregation of Thermo-Sensitive Proteins Shields Them from Degradation during Heat Stress. Cell Reports, 2020, 30, 2430-2443.e4.	2.9	33
14	Gcn5-mediated acetylation at MBF-regulated promoters induces the G1/S transcriptional wave. Nucleic Acids Research, 2019, 47, 8439-8451.	6.5	10
15	Monitoring cytosolic H2O2 fluctuations arising from altered plasma membrane gradients or from mitochondrial activity. Nature Communications, 2019, 10, 4526.	5.8	33
16	Phospho-mimicking Atf1 mutants bypass the transcription activating function of the MAP kinase Sty1 of fission yeast. Current Genetics, 2018, 64, 97-102.	0.8	13
17	Using in vivo oxidation status of one- and two-component redox relays to determine H2O2 levels linked to signaling and toxicity. BMC Biology, 2018, 16, 61.	1.7	20
18	The INO80 complex activates the transcription of Sâ€phase genes in a cell cycleâ€regulated manner. FEBS Journal, 2018, 285, 3870-3881.	2.2	7

#	Article	IF	CITATIONS
19	Deciphering the role of the signal- and Sty1 kinase-dependent phosphorylation of the stress-responsive transcription factor Atf1 on gene activation. Journal of Biological Chemistry, 2017, 292, 13635-13644.	1.6	31
20	Lack of a peroxiredoxin suppresses the lethality of cells devoid of electron donors by channelling electrons to oxidized ribonucleotide reductase. PLoS Genetics, 2017, 13, e1006858.	1.5	4
21	Spatiotemporal Control of Forkhead Binding to DNA Regulates the Meiotic Gene Expression Program. Cell Reports, 2016, 14, 885-895.	2.9	12
22	A functional genome-wide genetic screening identifies new pathways controlling the $G1/S$ transcriptional wave. Cell Cycle, 2016, 15, 720-729.	1.3	4
23	Genome-wide Screening of Regulators of Catalase Expression. Journal of Biological Chemistry, 2016, 291, 790-799.	1.6	13
24	Prp4 Kinase Grants the License to Splice: Control of Weak Splice Sites during Spliceosome Activation. PLoS Genetics, 2016, 12, e1005768.	1.5	27
25	A Cascade of Iron-Containing Proteins Governs the Genetic Iron Starvation Response to Promote Iron Uptake and Inhibit Iron Storage in Fission Yeast. PLoS Genetics, 2015, 11, e1005106.	1.5	57
26	Binding of the transcription factor Atf1 to promoters serves as a barrier to phase nucleosome arrays and avoid cryptic transcription. Nucleic Acids Research, 2014, 42, 10351-10359.	6.5	11
27	A genetic approach to study <scp>H</scp> ₂ <scp>O</scp> ₂ scavenging in fission yeast – distinct roles of peroxiredoxin and catalase. Molecular Microbiology, 2014, 92, 246-257.	1.2	17
28	Monitoring in vivo reversible cysteine oxidation in proteins using ICAT and mass spectrometry. Nature Protocols, 2014, 9, 1131-1145.	5.5	72
29	Dissection of a Redox Relay: H2O2-Dependent Activation of the Transcription Factor Pap1 through the Peroxidatic Tpx1-Thioredoxin Cycle. Cell Reports, 2013, 5, 1413-1424.	2.9	51
30	ls Oxidized Thioredoxin a Major Trigger for Cysteine Oxidation? Clues from a Redox Proteomics Approach. Antioxidants and Redox Signaling, 2013, 18, 1549-1556.	2.5	30
31	Reversible thiol oxidation in the H2O2-dependent activation of the transcription factor Pap1. Journal of Cell Science, 2013, 126, 2279-84.	1.2	16
32	Methionine sulphoxide reductases revisited: free methionine as a primary target of <scp><scp>H₂O₂</scp> stress in auxotrophic fission yeast. Molecular Microbiology, 2013, 90, 1113-1124.</scp>	1.2	6
33	Modification of tRNALysUUU by Elongator Is Essential for Efficient Translation of Stress mRNAs. PLoS Genetics, 2013, 9, e1003647.	1.5	115
34	The DNA damage and the DNA replication checkpoints converge at the MBF transcription factor. Molecular Biology of the Cell, 2013, 24, 3350-3357.	0.9	31
35	The transcription factors Pap1 and Prr1 collaborate to activate antioxidant, but not drug tolerance, genes in response to H 2 O 2. Nucleic Acids Research, 2012, 40, 4816-4824.	6.5	46
36	Cells Lacking Pfh1, a Fission Yeast Homolog of Mammalian Frataxin Protein, Display Constitutive Activation of the Iron Starvation Response. Journal of Biological Chemistry, 2012, 287, 43042-43051.	1.6	16

#	Article	IF	Citations
37	Chemical genetic induction of meiosis inSchizosaccharomyces pombe. Cell Cycle, 2012, 11, 1621-1625.	1.3	37
38	The oxidized thiol proteome in fission yeastâ€"Optimization of an ICAT-based method to identify H2O2-oxidized proteins. Journal of Proteomics, 2011, 74, 2476-2486.	1.2	45
39	Nuclear roles and regulation of chromatin structure by the stressâ€dependent MAP kinase Sty1 of <i>Schizosaccharomyces pombe</i> . Molecular Microbiology, 2011, 82, 542-554.	1.2	35
40	Yox1 links MBFâ€dependent transcription to completion of DNA synthesis. EMBO Reports, 2011, 12, 84-89.	2.0	28
41	G ₁ /S transcription and the DNA synthesis checkpoint: Common regulatory mechanisms. Cell Cycle, 2011, 10, 912-915.	1.3	19
42	Gcn5 facilitates Pol II progression, rather than recruitment to nucleosome-depleted stress promoters, in Schizosaccharomyces pombe. Nucleic Acids Research, 2011, 39, 6369-6379.	6.5	47
43	Lifespan extension by calorie restriction relies on the Sty1 MAP kinase stress pathway. EMBO Journal, 2010, 29, 981-991.	3.5	108
44	Living on the edge: stress and activation of stress responses promote lifespan extension. Aging, 2010, 2, 231-237.	1.4	38
45	At the (3′) end, you'll turn to meiosis. Nature Structural and Molecular Biology, 2009, 16, 350-351.	3.6	1
46	Genome-Wide Screen of Genes Required for Caffeine Tolerance in Fission Yeast. PLoS ONE, 2009, 4, e6619.	1.1	77
47	Promoter-driven splicing regulation in fission yeast. Nature, 2008, 455, 997-1000.	13.7	76
48	Transcription Factors Pcr1 and Atf1 Have Distinct Roles in Stress- and Sty1-Dependent Gene Regulation. Eukaryotic Cell, 2008, 7, 826-835.	3.4	76
49	Mitochondrial Dysfunction Increases Oxidative Stress and Decreases Chronological Life Span in Fission Yeast. PLoS ONE, 2008, 3, e2842.	1.1	79
50	A Meiosis-Specific Cyclin Regulated by Splicing Is Required for Proper Progression through Meiosis. Molecular and Cellular Biology, 2005, 25, 6330-6337.	1.1	47
51	A cysteine-sulfinic acid in peroxiredoxin regulates H2O2-sensing by the antioxidant Pap1 pathway. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 8875-8880.	3.3	230
52	The Glycolytic Metabolite Methylglyoxal Activates Pap1 and Sty1 Stress Responses in Schizosaccharomyces pombe. Journal of Biological Chemistry, 2005, 280, 36708-36713.	1.6	57
53	Activation of the redox sensor Pap1 by hydrogen peroxide requires modulation of the intracellular oxidant concentration. Molecular Microbiology, 2004, 52, 1427-1435.	1.2	104
54	Schizosaccharomyces pombe Cells Lacking the Ran-binding Protein Hba1 Show a Multidrug Resistance Phenotype Due to Constitutive Nuclear Accumulation of Pap1. Journal of Biological Chemistry, 2003, 278, 40565-40572.	1.6	36

#	Article	IF	CITATIONS
55	The G1/S Cyclin Cig2p during Meiosis in Fission Yeast. Molecular Biology of the Cell, 2002, 13, 2080-2090.	0.9	38
56	Diethylmaleate activates the transcription factor Pap1 by covalent modification of critical cysteine residues. Molecular Microbiology, 2002, 45, 243-254.	1.2	87
57	Feedback regulation of the MBF transcription factor by cyclin Cig2. Nature Cell Biology, 2001, 3, 1043-1050.	4.6	51
58	The Fission Yeast Protein p73 ^{<i>res2</i>} Is an Essential Component of the Mitotic MBF Complex and a Master Regulator of Meiosis. Molecular and Cellular Biology, 1997, 17, 6246-6254.	1.1	15
59	The <i>Schizosaccharomyces pombe</i> MBF Complex Requires Heterodimerization for Entry into S Phase. Molecular and Cellular Biology, 1995, 15, 2589-2599.	1.1	41
60	Immunolocalization of mitochondrial 3-hydroxy-3-methylgutaryl CoA synthase in rat liver. Journal of Cellular Physiology, 1995, 162, 103-109.	2.0	6
61	Gene expression of enzymes regulating ketogenesis and fatty acid metabolism in regenerating rat liver. Biochemical Journal, 1994, 299, 65-69.	1.7	25
62	The rat mitochondrial 3-hydroxy-3-methylglutaryl-coenzyme-A-synthase gene contains elements that mediate its multihormonal regulation and tissue specificity. FEBS Journal, 1993, 213, 773-779.	0.2	37
63	Structural characterization of the 3′ noncoding region of the gene encoding rat mitochondrial 3-hydroxy-3-methylglutaryl coenzyme A synthase. Gene, 1993, 123, 267-270.	1.0	9
64	Methylation of the regulatory region of the mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase gene leads to its transcriptional inactivation. Biochemical Journal, 1993, 295, 807-812.	1.7	14
65	Testis and ovary express the gene for the ketogenic mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase. Journal of Lipid Research, 1993, 34, 867-874.	2.0	24
66	Testis and ovary express the gene for the ketogenic mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase. Journal of Lipid Research, 1993, 34, 867-74.	2.0	20
67	Regulation of the expression of the mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase gene. Its role in the control of ketogenesis. Biochemical Journal, 1992, 283, 261-264.	1.7	86
68	Diurnal rhythm of rat liver cytosolic 3-hydroxy-3-methylglutaryl-CoA synthase. Biochemical Journal, 1991, 280, 61-64.	1.7	19
69	Characterization of the gene encoding the 10 kDa polypeptide of photosystem II fromArabidopsis thaliana. Plant Molecular Biology, 1991, 17, 517-522.	2.0	6
70	Identification of a cholesterol-regulated 180-kDA microsomal protein in rat hepatocytes. FEBS Journal, 1990, 188, 123-129.	0.2	5
71	Nucleotide sequence of a rat liver cDNA encoding the Cytosolic 3-hydroxy-3-methylglutaryl coenzyme A synthase. Nucleic Acids Research, 1990, 18, 3642-3642.	6.5	26
72	Rat mitochondrial and cytosolic 3-hydroxy-3-methylglutaryl-CoA synthases are encoded by two different genes Proceedings of the National Academy of Sciences of the United States of America, 1990, 87, 3874-3878.	3.3	87