Antoine Danchin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5434894/publications.pdf

Version: 2024-02-01

480 papers 31,144 citations

81
h-index

156 g-index

516 all docs

516 docs citations

516 times ranked

22812 citing authors

#	Article	IF	CITATIONS
1	The complete genome sequence of the Gram-positive bacterium Bacillus subtilis. Nature, 1997, 390, 249-256.	27.8	3,519
2	Selective stabilisation of developing synapses as a mechanism for the specification of neuronal networks. Nature, 1976, 264, 705-712.	27.8	1,559
3	Essential <i>Bacillussubtilis</i> genes. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 4678-4683.	7.1	1,261
4	Organised Genome Dynamics in the Escherichia coli Species Results in Highly Diverse Adaptive Paths. PLoS Genetics, 2009, 5, e1000344.	3 . 5	1,005
5	Cross-host evolution of severe acute respiratory syndrome coronavirus in palm civet and human. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 2430-2435.	7.1	602
6	The genome sequence of the entomopathogenic bacterium Photorhabdus luminescens. Nature Biotechnology, 2003, 21, 1307-1313.	17.5	538
7	Unique physiological and pathogenic features of Leptospira interrogans revealed by whole-genome sequencing. Nature, 2003, 422, 888-893.	27.8	513
8	Base composition bias might result from competition for metabolic resources. Trends in Genetics, 2002, 18, 291-294.	6.7	447
9	Open-Source Genomic Analysis of Shiga-Toxin–Producing <i>E. coli</i> O104:H4. New England Journal of Medicine, 2011, 365, 718-724.	27.0	392
10	Genomeâ€based analysis of virulence genes in a nonâ€biofilmâ€forming <i>Staphylococcus epidermidis</i> strain (ATCC 12228). Molecular Microbiology, 2003, 49, 1577-1593.	2.5	387
11	Secretion of cyclolysin, the calmodulin-sensitive adenylate cyclase-haemolysin bifunctional protein of Bordetella pertussis EMBO Journal, 1988, 7, 3997-4004.	7.8	377
12	Largeâ€scale monitoring of pleiotropic regulation of gene expression by the prokaryotic nucleoidâ€associated protein, Hâ€NS. Molecular Microbiology, 2001, 40, 20-36.	2.5	376
13	CotA of Bacillus subtilis Is a Copper-Dependent Laccase. Journal of Bacteriology, 2001, 183, 5426-5430.	2.2	369
14	Coping with cold: The genome of the versatile marine Antarctica bacterium Pseudoalteromonas haloplanktis TAC125. Genome Research, 2005, 15, 1325-1335.	5 . 5	367
15	Evidence for horizontal gene transfer in Escherichia coli speciation. Journal of Molecular Biology, 1991, 222, 851-856.	4.2	364
16	From a consortium sequence to a unified sequence: the Bacillus subtilis 168 reference genome a decade later. Microbiology (United Kingdom), 2009, 155, 1758-1775.	1.8	317
17	The calmodulin-sensitive adenylate cyclase ofBordetella pertussis: cloning and expression inEscherichia col. Molecular Microbiology, 1988, 2, 19-30.	2.5	297
18	The revisited genome of <i>Pseudomonas putida</i> KT2440 enlightens its value as a robust metabolic <i>chassis</i> . Environmental Microbiology, 2016, 18, 3403-3424.	3.8	270

#	Article	IF	Citations
19	Multiple Control of Flagellum Biosynthesis in <i>Escherichia coli</i> : Role of H-NS Protein and the Cyclic AMP-Catabolite Activator Protein Complex in Transcription of the <i>flhDC</i> Master Operon. Journal of Bacteriology, 1999, 181, 7500-7508.	2.2	246
20	An Analysis of Determinants of Amino Acids Substitution Rates in Bacterial Proteins. Molecular Biology and Evolution, 2004, 21, 108-116.	8.9	240
21	Generation of mutation hotspots in ageing bacterial colonies. Scientific Reports, 2016, 6, 2.	3.3	231
22	A Theory of the Epigenesis of Neuronal Networks by Selective Stabilization of Synapses. Proceedings of the National Academy of Sciences of the United States of America, 1973, 70, 2974-2978.	7.1	230
23	Secretion of cyclolysin, the calmodulin-sensitive adenylate cyclase-haemolysin bifunctional protein of Bordetella pertussis. EMBO Journal, 1988, 7, 3997-4004.	7.8	213
24	From dirt to industrial applications: Pseudomonas putida as a Synthetic Biology chassis for hosting harsh biochemical reactions. Current Opinion in Chemical Biology, 2016, 34, 20-29.	6.1	199
25	Essentiality, not expressiveness, drives gene-strand bias in bacteria. Nature Genetics, 2003, 34, 377-378.	21.4	198
26	Subtilist: a relational database for the Bacillus subtilis genome. Microbiology (United Kingdom), 1995, 141, 261-268.	1.8	194
27	Genomic Encyclopedia of Bacteria and Archaea: Sequencing a Myriad of Type Strains. PLoS Biology, 2014, 12, e1001920.	5.6	190
28	Bacillus subtilisgenome project: cloning and sequencing of the 97 kb region from 325° to 333deg;. Molecular Microbiology, 1993, 10, 371-384.	2.5	187
29	The H-NS protein is involved in the biogenesis of flagella in Escherichia coli. Journal of Bacteriology, 1994, 176, 5537-5540.	2.2	174
30	Universal replication biases in bacteria. Molecular Microbiology, 1999, 32, 11-16.	2.5	170
31	GadE (YhiE): a novel activator involved in the response to acid environment in Escherichia coli. Microbiology (United Kingdom), 2004, 150, 61-72.	1.8	166
32	A Tale of Two Oxidation States: Bacterial Colonization of Arsenic-Rich Environments. PLoS Genetics, 2007, 3, e53.	3.5	166
33	Synthetic biology: discovering new worlds and new words. EMBO Reports, 2008, 9, 822-827.	4.5	148
34	Sulfur metabolism in Escherichia coli and related bacteria: facts and fiction. Journal of Molecular Microbiology and Biotechnology, 2000, 2, 145-77.	1.0	146
35	Gene essentiality determines chromosome organisation in bacteria. Nucleic Acids Research, 2003, 31, 6570-6577.	14.5	145
36	S-box and T-box riboswitches and antisense RNA control a sulfur metabolic operon of Clostridium acetobutylicum. Nucleic Acids Research, 2008, 36, 5955-5969.	14.5	144

3

#	Article	IF	Citations
37	Bacterial variations on the methionine salvage pathway. BMC Microbiology, 2004, 4, 9.	3.3	142
38	The ptsH, ptsI, and crr genes of the Escherichia coli phosphoenolpyruvate-dependent phosphotransferase system: a complex operon with several modes of transcription. Journal of Bacteriology, 1988, 170, 3827-3837.	2.2	137
39	How Essential Are Nonessential Genes?. Molecular Biology and Evolution, 2005, 22, 2147-2156.	8.9	135
40	Detection of new genes in a bacterial genome using Markov models for three gene classes. Nucleic Acids Research, 1995, 23, 3554-3562.	14.5	132
41	The calmodulin-sensitive adenylate cyclase of Bordetella pertussis: cloning and expression in Escherichia coli. Molecular Microbiology, 1988, 2, 19-30.	2.5	125
42	Two-component regulatory proteins ResD-ResE are required for transcriptional activation of fnr upon oxygen limitation in Bacillus subtilis. Journal of Bacteriology, 1996, 178, 3796-3802.	2.2	121
43	The viral transmembrane superfamily: possible divergence of Arenavirus and Filovirus glycoproteins from a common RNA virus ancestor. BMC Microbiology, $2001, 1, 1$.	3.3	121
44	Bacillus subtilis F0F1 ATPase: DNA sequence of the atp operon and characterization of atp mutants. Journal of Bacteriology, 1994, 176, 6802-6811.	2.2	120
45	Proton magnetic relaxation studies of manganous complexes of transfer RNA and related compounds. Journal of Molecular Biology, 1969, 39, 199-217.	4.2	119
46	Identification, Characterization, and Regulation of a Cluster of Genes Involved in Carbapenem Biosynthesis in Photorhabdus luminescens. Applied and Environmental Microbiology, 2002, 68, 3780-3789.	3.1	116
47	Genomics of an extreme psychrophile, Psychromonas ingrahamii. BMC Genomics, 2008, 9, 210.	2.8	114
48	Bacteria as computers making computers. FEMS Microbiology Reviews, 2009, 33, 3-26.	8.6	113
49	A double epidemic model for the SARS propagation. BMC Infectious Diseases, 2003, 3, 19.	2.9	111
50	Catabolite Regulation of the pta Gene as Part of Carbon Flow Pathways in Bacillus subtilis. Journal of Bacteriology, 1999, 181, 6889-6897.	2.2	111
51	Ytql from Bacillus subtilis has both oligoribonuclease and pAp-phosphatase activity. Nucleic Acids Research, 2007, 35, 4552-4561.	14.5	109
52	Molecular cloning, sequencing, and physiological characterization of the qox operon from Bacillus subtilis encoding the aa3-600 quinol oxidase Journal of Biological Chemistry, 1992, 267, 10225-10231.	3 . 4	107
53	From essential to persistent genes: a functional approach to constructing synthetic life. Trends in Genetics, 2013, 29, 273-279.	6.7	106
54	SubtiList: the reference database for the Bacillus subtilis genome. Nucleic Acids Research, 2002, 30, 62-65.	14.5	105

#	Article	IF	CITATIONS
55	Persistence drives gene clustering in bacterial genomes. BMC Genomics, 2008, 9, 4.	2.8	104
56	A rapid test for the rel a mutation in E. coli. Biochemical and Biophysical Research Communications, 1976, 69, 751-758.	2.1	103
57	Cyclic AMP as a modulator of polarity in polycistronic transcriptional units Proceedings of the National Academy of Sciences of the United States of America, 1979, 76, 3194-3197.	7.1	101
58	Codon usage and lateral gene transfer in Bacillus subtilis. Current Opinion in Microbiology, 1999, 2, 524-528.	5.1	101
59	Evolutionary Role of Restriction/Modification Systems as Revealed by Comparative Genome Analysis. Genome Research, 2001, 11, 946-958.	5.5	101
60	Structural homology between virulence-associated bacterial adenylate cyclases. Gene, 1988, 71, 293-298.	2.2	100
61	The urgent need for microbiology literacy in society. Environmental Microbiology, 2019, 21, 1513-1528.	3.8	99
62	Identification of residues essential for catalysis and binding of calmodulin in Bordetella pertussis adenylate cyclase by site-directed mutagenesis EMBO Journal, 1989, 8, 967-972.	7.8	98
63	The Trw Type IV Secretion System of Bartonella Mediates Host-Specific Adhesion to Erythrocytes. PLoS Pathogens, 2010, 6, e1000946.	4.7	98
64	A Xanthomonas campestris pv. campestris protein similar to catabolite activation factor is involved in regulation of phytopathogenicity. Journal of Bacteriology, 1990, 172, 5877-5883.	2.2	96
65	Conversion of Methionine to Cysteine in Bacillus subtilis and Its Regulation. Journal of Bacteriology, 2007, 189, 187-197.	2.2	96
66	Cooperative Binding of Manganese (II) to Transfer RNA. FEBS Journal, 1970, 16, 532-536.	0.2	95
67	Structure-based discovery of inhibitors of the YycG histidine kinase: new chemical leads to combat Staphylococcus epidermidis infections. BMC Microbiology, 2006, 6, 96.	3.3	95
68	Global Control of Cysteine Metabolism by CymR in Bacillus subtilis. Journal of Bacteriology, 2006, 188, 2184-2197.	2.2	95
69	<i>Bacillus subtilis,</i> the model Gramâ€positive bacterium: 20Âyears of annotation refinement. Microbial Biotechnology, 2018, 11, 3-17.	4.2	95
70	Translation in Bacillus subtilis: roles and trends of initiation and termination, insights from a genome analysis. Nucleic Acids Research, 1999, 27, 3567-3576.	14.5	94
71	The PhoP-PhoQ Two-Component Regulatory System of Photorhabdus luminescens Is Essential for Virulence in Insects. Journal of Bacteriology, 2004, 186, 1270-1279.	2.2	94
72	Escherichia coli UMP kinase, a Member of the Aspartokinase Family, Is a Hexamer Regulated by Guanine Nucleotides and UTP. Biochemistry, 1995, 34, 5066-5074.	2.5	93

#	Article	IF	CITATIONS
73	Anaerobic transcription activation in Bacillus subtilis: identification of distinct FNR-dependent and -independent regulatory mechanisms EMBO Journal, 1995, 14, 5984-5994.	7.8	93
74	The structural and functional organization of H-NS-like proteins is evolutionarily conserved in Gram-negative bacteria. Molecular Microbiology, 1999, 31, 319-329.	2.5	92
75	Proteomics of life at low temperatures: trigger factor is the primary chaperone in the Antarctic bacterium <i>Pseudoalteromonas haloplanktis</i> /i> TAC125. Molecular Microbiology, 2010, 76, 120-132.	2.5	91
76	The cya locus of escherichia coli K12: Organization and gene products. Molecular Genetics and Genomics, 1982, 188, 465-471.	2.4	90
77	Cloning and expression of the calmodulin-sensitive Bacillus anthracis adenylate cyclase in Escherichia coli. Gene, 1988, 64, 277-284.	2.2	90
78	Cyclic AMP synthesis in Escherichia coli strains bearing known deletions in the pts phosphotransferase operon. Gene, 1990, 86, 27-33.	2.2	89
79	Oligonucleotide bias in Bacillus subtilis: General trends and taxonomic comparisons. Nucleic Acids Research, 1998, 26, 2971-2980.	14.5	87
80	Life in the Cold: a Proteomic Study of Cold-Repressed Proteins in the Antarctic Bacterium Pseudoalteromonas haloplanktis TAC125. Applied and Environmental Microbiology, 2011, 77, 3881-3883.	3.1	87
81	Three Different Systems Participate in l-Cystine Uptake in Bacillus subtilis. Journal of Bacteriology, 2004, 186, 4875-4884.	2.2	86
82	Regulation of adenylate cyclase synthesis in Escherichia coli: nucleotide sequence of the control region EMBO Journal, 1983, 2, 791-797.	7.8	85
83	Was photosynthetic RuBisCO recruited by acquisitive evolution from RuBisCO-like proteins involved in sulfur metabolism?. Research in Microbiology, 2005, 156, 611-618.	2.1	85
84	The complete nucleotide sequence of the adenylate cyclase gene of Escherichia coli. Nucleic Acids Research, 1984, 12, 9427-9440.	14.5	84
85	The methionine salvage pathway in Bacillus subtilis. BMC Microbiology, 2002, 2, 8.	3.3	83
86	Molecular cloning, sequencing, and physiological characterization of the qox operon from Bacillus subtilis encoding the aa3-600 quinol oxidase. Journal of Biological Chemistry, 1992, 267, 10225-31.	3.4	82
87	Correlation between the serine sensitivity and the derepressibility of the ilv genes in Escherichia coli relA â^mutants. Molecular Genetics and Genomics, 1978, 165, 21-30.	2.4	81
88	Mapping of sequenced genes (700 kbp) in the restriction map of the Escherichia coli chromosome. Molecular Microbiology, 1990, 4, 169-187.	2.5	81
89	The CymR Regulator in Complex with the Enzyme CysK Controls Cysteine Metabolism in Bacillus subtilis. Journal of Biological Chemistry, 2008, 283, 35551-35560.	3.4	81
90	Mutations in the bglY gene increase the frequency of spontaneous deletions in Escherichia coli K-12 Proceedings of the National Academy of Sciences of the United States of America, 1990, 87, 360-363.	7.1	80

#	Article	IF	CITATIONS
91	<i>Aeromonas hydrophila</i> Adenylyl Cyclase 2: a New Class of Adenylyl Cyclases with Thermophilic Properties and Sequence Similarities to Proteins from Hyperthermophilic Archaebacteria. Journal of Bacteriology, 1998, 180, 3339-3344.	2.2	79
92	Colibri: a functional data base for the Escherichia coli genome. Microbiological Reviews, 1993, 57, 623-654.	10.1	79
93	tRNA structure and binding sites for cations. Biopolymers, 1972, 11, 1317-1333.	2.4	78
94	Analysis of long repeats in bacterial genomes reveals alternative evolutionary mechanisms in Bacillus subtilis and other competent prokaryotes. Molecular Biology and Evolution, 1999, 16, 1219-1230.	8.9	78
95	CymR, the master regulator of cysteine metabolism in <i>Staphylococcus aureus</i> , controls host sulphur source utilization and plays a role in biofilm formation. Molecular Microbiology, 2009, 73, 194-211.	2.5	76
96	Structural and catalytic characteristics of Escherichia coli adenylate kinase Journal of Biological Chemistry, 1987, 262, 622-629.	3.4	75
97	MvaT proteins in Pseudomonas spp.: a novel class of H-NS-like proteins. Microbiology (United) Tj ETQq1 1 0.7843	14 rgBT /	Overlock 10 74
98	Role of Escherichia Coli Histone-Like Nucleoid-Structuring Protein in Bacterial Metabolism and Stress Response. Identification of Targets by Two-Dimensional Electrophoresis. FEBS Journal, 1997, 244, 767-773.	0.2	73
99	Small noncoding RNA GcvB is a novel regulator of acid resistance in Escherichia coli. BMC Genomics, 2009, 10, 165.	2.8	73
100	The contribution of microbial biotechnology to sustainable development goals. Microbial Biotechnology, 2017, 10, 984-987.	4.2	73
101	An updated metabolic view of the Bacillus subtilis 168 genome. Microbiology (United Kingdom), 2013, 159, 757-770.	1.8	72
102	Homeotopic transformation and the origin of translation. Progress in Biophysics and Molecular Biology, 1989, 54, 81-86.	2.9	71
103	Isolation and characterization of catalytic and calmodulin-binding domains of Bordetella pertussis adenylate cyclase. FEBS Journal, 1991, 196, 469-474.	0.2	71
104	Scaling up synthetic biology: Do not forget the chassis. FEBS Letters, 2012, 586, 2129-2137.	2.8	69
105	Mutations in bglY, the structural gene for the DNA-binding protein H1, affect expression of several Escherichia coli genes. Biochimie, 1990, 72, 889-891.	2.6	68
106	Degradation of nanoRNA is performed by multiple redundant RNases in Bacillus subtilis. Nucleic Acids Research, 2009, 37, 5114-5125.	14.5	68
107	Unknown unknowns: essential genes in quest for function. Microbial Biotechnology, 2016, 9, 530-540.	4.2	68
108	Chemical reactivity drives spatiotemporal organisation of bacterial metabolism. FEMS Microbiology Reviews, 2014, 39, n/a-n/a.	8.6	67

#	Article	IF	Citations
109	Uneven Distribution of GATC Motifs in the Escherichia coli Chromosome, its Plasmids and its Phages. Journal of Molecular Biology, 1996, 257, 574-585.	4.2	66
110	Adenylyl Cyclases: A Heterogeneous Class of ATP-Utilizing Enzymes. Progress in Molecular Biology and Translational Science, 1994, 49, 241-283.	1.9	65
111	Phylogenomics of expanding uncultured environmental Tenericutes provides insights into their pathogenicity and evolutionary relationship with Bacilli. BMC Genomics, 2020, 21, 408.	2.8	65
112	CMP Kinase from Escherichia coli Is Structurally Related to Other Nucleoside Monophosphate Kinases. Journal of Biological Chemistry, 1996, 271, 2856-2862.	3.4	64
113	Characterization of polyamine synthesis pathway inBacillus subtilis168. Molecular Microbiology, 1998, 29, 851-858.	2.5	64
114	Catabolite repression in Escherichia coli mutants lacking cyclic AMP receptor protein Proceedings of the National Academy of Sciences of the United States of America, 1980, 77, 5799-5801.	7.1	63
115	Identification and isolation of a gene required for nitrate assimilation and anaerobic growth of Bacillus subtilis. Journal of Bacteriology, 1995, 177, 1112-1115.	2.2	62
116	On proteins of the microsporidian invasive apparatus: complete sequence of a polar tube protein of Encephalitozoon cuniculi. Molecular Microbiology, 1998, 29, 825-834.	2.5	62
117	Mta, a global MerR-type regulator of the Bacillus subtilis multidrug-efflux transporters. Molecular Microbiology, 1999, 31, 1549-1559.	2.5	62
118	Ongoing Evolution of Strand Composition in Bacterial Genomes. Molecular Biology and Evolution, 2001, 18, 1789-1799.	8.9	62
119	Nucleotide Sequence Database Policies. Science, 2002, 298, 1333b-1333.	12.6	62
120	Oligoribonuclease is a common downstream target of lithium-induced pAp accumulation in Escherichia coli and human cells. Nucleic Acids Research, 2006, 34, 2364-2373.	14.5	62
121	Extracting biological information from DNA arrays: an unexpected link between arginine and methionine metabolism in Bacillus subtilis. Genome Biology, 2001, 2, research0019.1.	9.6	61
122	Pleiotropic Role of Quorum-Sensing Autoinducer 2 in Photorhabdus luminescens. Applied and Environmental Microbiology, 2006, 72, 6439-6451.	3.1	59
123	Phylogeny of related functions: the case of polyamine biosynthetic enzymes. Microbiology (United) Tj ETQq $1\ 1$	0.784314 1.8	rgBJ ₉ /Overlo
124	Regulation of bacterial motility in response to low pH in Escherichia coli: the role of H-NS protein. Microbiology (United Kingdom), 2002, 148, 1543-1551.	1.8	59
125	Anaerobic transcription activation in Bacillus subtilis: identification of distinct FNR-dependent and -independent regulatory mechanisms. EMBO Journal, 1995, 14, 5984-94.	7.8	59
126	Escherichia coli molecular genetic map (1500 kbp): update II. Molecular Microbiology, 1991, 5, 2629-2640.	2.5	58

#	Article	IF	CITATIONS
127	Decrypting the H-NS-dependent regulatory cascade of acid stress resistance in Escherichia coli. BMC Microbiology, 2010, 10, 273.	3.3	58
128	Structural and catalytic characteristics of Escherichia coli adenylate kinase. Journal of Biological Chemistry, 1987, 262, 622-9.	3.4	58
129	Cloning and assembly strategies in microbial genome projects. Microbiology (United Kingdom), 1999, 145, 2625-2634.	1.8	56
130	Evolutionary Role of Restriction/Modification Systems as Revealed by Comparative Genome Analysis. Genome Research, 2001, 11, 946-958.	5.5	56
131	Analysis of the ptsH-ptsl-crr region in Escherichia coli K-12: nucleotide sequence of the ptsH gene. Gene, 1985, 35, 199-207.	2.2	55
132	Testing the hypothesis of a recombinant origin of the SARS-associated coronavirus. Archives of Virology, 2005, 150, 1-20.	2.1	54
133	The ten grand challenges of synthetic life. Systems and Synthetic Biology, 2011, 5, 1-9.	1.0	54
134	Coenzyme B12 synthesis as a baseline to study metabolite contribution of animal microbiota. Microbial Biotechnology, 2017, 10, 688-701.	4.2	54
135	<scp>The importance of naturally attenuated SARSâ€CoV</scp> â€2 <scp>in the fight against COVID</scp> â€19. Environmental Microbiology, 2020, 22, 1997-2000.	3.8	54
136	H-NS and H-NS-like proteins in Gram-negative bacteria andtheir multiple role in the regulation of bacterial metabolism. Biochimie, 2001, 83, 235-241.	2.6	53
137	Molecular diagnosis of human cancer type by gene expression profiles and independent component analysis. European Journal of Human Genetics, 2005, 13, 1303-1311.	2.8	53
138	Imagene: an integrated computer environment for sequence annotation and analysis. Bioinformatics, 1999, 15, 2-15.	4.1	51
139	Identification of Bacillus subtilis CysL, a Regulator of the cysJI Operon, Which Encodes Sulfite Reductase. Journal of Bacteriology, 2002, 184, 4681-4689.	2.2	51
140	The PatB protein of Bacillus subtilis is a C-S-lyase. Biochimie, 2005, 87, 231-238.	2.6	51
141	RcsB plays a central role in H-NS-dependent regulation of motility and acid stress resistance in Escherichia coli. Research in Microbiology, 2010, 161, 363-371.	2.1	51
142	Two functional domains in adenylate cyclase of Escherichia coli. Journal of Molecular Biology, 1983, 165, 197-202.	4.2	50
143	Metabolic alterations mediated by 2-ketobutyrate in Escherichia coli K12. Molecular Genetics and Genomics, 1984, 193, 473-478.	2.4	50
144	Rhizobium meliloti adenylate cyclase is related to eucaryotic adenylate and guanylate cyclases. Journal of Bacteriology, 1990, 172, 2614-2621.	2.2	50

#	Article	IF	Citations
145	Functional and evolutionary roles of long repeats in prokaryotes. Research in Microbiology, 1999, 150, 725-733.	2.1	50
146	The metNPQ operon of Bacillus subtilis encodes an ABC permease transporting methionine sulfoxide, d- and l-methionine. Research in Microbiology, 2004, 155, 80-86.	2.1	50
147	Control of Bacterial Motility by Environmental Factors in Polarly Flagellated and Peritrichous Bacteria Isolated from Lake Baikal. Applied and Environmental Microbiology, 2001, 67, 3852-3859.	3.1	49
148	Global Expression Profile of Bacillus subtilis Grown in the Presence of Sulfate or Methionine. Journal of Bacteriology, 2002, 184, 5179-5186.	2.2	49
149	The extant core bacterial proteome is an archive of the origin of life. Proteomics, 2007, 7, 875-889.	2.2	49
150	Genomic characterization of symbiotic mycoplasmas from the stomach of deepâ€sea isopod <i>bathynomus</i> sp. Environmental Microbiology, 2016, 18, 2646-2659.	3.8	49
151	The metIC operon involved in methionine biosynthesis in Bacillus subtilis is controlled by transcription antitermination. Microbiology (United Kingdom), 2002, 148, 507-518.	1.8	49
152	Regulation of adenylate cyclase synthesis in Escherichia coli: nucleotide sequence of the control region. EMBO Journal, 1983, 2, 791-7.	7.8	49
153	Mapping the bacterial cell architecture into the chromosome. Philosophical Transactions of the Royal Society B: Biological Sciences, 2000, 355, 179-190.	4.0	48
154	Positive regulation of the pts operon of Escherichia coli: genetic evidence for a signal transduction mechanism. Journal of Bacteriology, 1991, 173, 727-733.	2.2	47
155	RuBisCO-like proteins as the enolase enzyme in the methionine salvage pathway: functional and evolutionary relationships between RuBisCO-like proteins and photosynthetic RuBisCO. Journal of Experimental Botany, 2007, 59, 1543-1554.	4.8	47
156	Protein export in prokaryotes and eukaryotes: Indications of a difference in the mechanism of exportation. Journal of Molecular Evolution, 1986, 24, 130-142.	1.8	46
157	Phylogeny of metabolic pathways: O-acetylserine sulphydrylase A is homologous to the tryptophan synthase beta subunit. Molecular Microbiology, 1988, 2, 777-783.	2.5	46
158	Proton Magnetic Relaxation Study of the Manganese–Transferâ€RNA Complex. Journal of Chemical Physics, 1970, 53, 3599-3609.	3.0	45
159	Exploring the Penicillium marneffei genome. Archives of Microbiology, 2003, 179, 339-353.	2.2	45
160	No wisdom in the crowd: genome annotation in the era of big data – current status and future prospects. Microbial Biotechnology, 2018, 11, 588-605.	4.2	45
161	Toward unrestricted use of public genomic data. Science, 2019, 363, 350-352.	12.6	45
162	Antibodies against a fused â€~lacZ-yeast mitochondrial intron' gene product allow identification of the mRNA maturase encoded by the fourth intron of the yeast cob-box gene EMBO Journal, 1984, 3, 1567-1572.	7.8	44

#	Article	IF	Citations
163	A strandâ€specific model for chromosome segregation in bacteria. Molecular Microbiology, 2003, 49, 895-903.	2.5	44
164	Toward an understanding of the formylation of initiator tRNA methionine in prokaryotic protein synthesis. I. In vitro studies of the 30S and 70S ribosomal-tRNA complex. Biochemistry, 1976, 15, 1357-1362.	2.5	43
165	A gene encoding a tyrosine tRNA synthetase is located near Sacs in Bacillus subtilis. DNA Sequence, 1991, 1, 251-261.	0.7	43
166	Positive regulation of the expression of the Escherichia coli pts operon. Journal of Molecular Biology, 1992, 226, 623-635.	4.2	43
167	Isolation and Characterization of vicH , Encoding a New Pleiotropic Regulator in Vibrio cholerae. Journal of Bacteriology, 2000, 182, 2026-2032.	2.2	43
168	Restriction map of the cya region of the Escherichia coli K12 chromosome. Biochimie, 1981, 63, 719-722.	2.6	41
169	Indigo: a World-Wide-Web review of genomes and gene functions. FEMS Microbiology Reviews, 1998, 22, 207-227.	8.6	41
170	The mechanisms responsible for 2-dimensional pattern formation in bacterial macrofiber populations grown on solid surfaces: fiber joining and the creation of exclusion zones. BMC Microbiology, 2002, 2, 1.	3.3	41
171	Why Nature Chose Potassium. Journal of Molecular Evolution, 2019, 87, 271-288.	1.8	41
172	The cya gene region of Erwinia chrysanthemi B374: organisation and gene products. Molecular Genetics and Genomics, 1985, 201, 38-42.	2.4	40
173	Characterization of NrnA homologs from Mycobacterium tuberculosis and Mycoplasma pneumoniae. Rna, 2012, 18, 155-165.	3 . 5	40
174	Identification ofÂgenes andÂproteins involved inÂtheÂpleiotropic response toÂarsenic stress inÂCaenibacterÂarsenoxydans, aÂmetalloresistant beta-proteobacterium with anÂunsequenced genome. Biochimie, 2006, 88, 595-606.	2.6	39
175	Codon Usage Domains over Bacterial Chromosomes. PLoS Computational Biology, 2006, 2, e37.	3.2	38
176	Antifragility and Tinkering in Biology (and in Business) Flexibility Provides an Efficient Epigenetic Way to Manage Risk. Genes, 2011, 2, 998-1016.	2.4	38
177	The Enigmatic Genome of an Obligate Ancient Spiroplasma Symbiont in a Hadal Holothurian. Applied and Environmental Microbiology, 2018, 84, .	3.1	38
178	Revisiting the methionine salvage pathway and its paralogues. Microbial Biotechnology, 2019, 12, 77-97.	4.2	38
179	Mutational Analysis of UMP Kinase from <i>Escherichia coli</i> . Journal of Bacteriology, 1998, 180, 473-477.	2.2	38
180	Differences in binding of oligo C to charged and uncharged tRNA. FEBS Letters, 1970, 9, 327-330.	2.8	37

#	Article	IF	CITATIONS
181	Comparison Between the Escherichia coli and Bacillus subtilis Genomes Suggests That a Major Function of Polynucleotide Phosphorylase is to Synthesize CDP. DNA Research, 1997, 4, 9-18.	3.4	37
182	Detecting and Analyzing DNA Sequencing Errors: Toward a Higher Quality of the Bacillus subtilis Genome Sequence. Genome Research, 1999, 9, 1116-1127.	5 . 5	37
183	From protein sequence to function. Current Opinion in Structural Biology, 1999, 9, 363-367.	5.7	37
184	S-adenosylmethionine decarboxylase of Bacillus subtilis is closely related to archaebacterial counterparts. Molecular Microbiology, 2000, 36, 1135-1147.	2.5	37
185	Sulfur-limitation-regulated proteins in Bacillus subtilis: a two-dimensional gel electrophoresis study. Microbiology (United Kingdom), 2001, 147, 1631-1640.	1.8	37
186	The H-NS protein modulates the activation of the ilvIH operon of Escherichia coli K12 by Lrp, the leucine regulatory protein. Molecular Genetics and Genomics, 1994, 242, 736-743.	2.4	36
187	Implication of gene distribution in the bacterial chromosome for the bacterial cell factory. Journal of Biotechnology, 2000, 78, 209-219.	3.8	36
188	Re-annotation of genome microbial coding-sequences: finding new genes and inaccurately annotated genes. BMC Bioinformatics, 2002, 3, 5.	2.6	36
189	Life's demons: information and order in biology. EMBO Reports, 2011, 12, 495-499.	4.5	36
190	Isolation and characterization of an Escherichia coli mutant affected in the regulation of adenylate cyclase. Journal of Bacteriology, 1981, 148, 753-761.	2.2	36
191	Identification of residues essential for catalysis and binding of calmodulin in Bordetella pertussis adenylate cyclase by site-directed mutagenesis. EMBO Journal, 1989, 8, 967-72.	7.8	36
192	Functional consequences of single amino acid substitutions in calmodulin-activated adenylate cyclase of Bordetella pertussis EMBO Journal, 1991, 10, 1683-1688.	7.8	35
193	Spx mediates oxidative stress regulation of the methionine sulfoxide reductases operon in Bacillus subtilis. BMC Microbiology, 2008, 8, 128.	3.3	35
194	Yeast adenylate cyclase catalytic domain is carboxy terminal. Current Genetics, 1986, 10, 343-352.	1.7	34
195	Natural selection and immortality. Biogerontology, 2009, 10, 503-516.	3.9	34
196	Hydrothermally generated aromatic compounds are consumed by bacteria colonizing in Atlantis II Deep of the Red Sea. ISME Journal, 2011, 5, 1652-1659.	9.8	34
197	Interpretable and accurate prediction models for metagenomics data. GigaScience, 2020, 9, .	6.4	34
198	Colibri: a functional data base for the Escherichia coli genome Microbiological Reviews, 1993, 57, 623-654.	10.1	34

#	Article	IF	Citations
199	A SeqA hyperstructure and its interactions direct the replication and sequestration of DNA. Molecular Microbiology, 2000, 37, 696-702.	2.5	33
200	Identification of a novel nanoRNase in Bartonella. Microbiology (United Kingdom), 2012, 158, 886-895.	1.8	33
201	Organization of the European Bacillus subtilis genome sequencing project. Microbiology (United) Tj ETQq1 1 0.7	84314 rgE 1.8	ST JGverlock
202	Formylation of initiator tRNA methionine in procaryotic protein synthesis: in vivo polarity in lactose operon expression. Journal of Bacteriology, 1978, 135, 453-459.	2.2	33
203	Does formylation of initiator tRNA act as a regulatory signal inE. coli?. FEBS Letters, 1973, 34, 327-332.	2.8	32
204	2-ketobutyrate: A putative alarmone of Escherichia coli. Molecular Genetics and Genomics, 1983, 190, 452-458.	2.4	32
205	Cytosine drives evolution of <scp>SARS oVâ€2</scp> . Environmental Microbiology, 2020, 22, 1977-1985.	3.8	32
206	Binding of 3â€~-anthraniloyl-2â€~-deoxy-ATP to calmodulin-activated adenylate cyclase from Bordetella pertussis and Bacillus anthracis Journal of Biological Chemistry, 1990, 265, 18902-18906.	3.4	32
207	Phylogeny of adenylyl cyclases. Advances in Second Messenger and Phosphoprotein Research, 1993, 27, 109-62.	4.5	32
208	From data banks to data bases. Research in Microbiology, 1991, 142, 913-916.	2.1	31
209	Proteome analysis of the phenotypic variation process inPhotorhabdus luminescens. Proteomics, 2006, 6, 2705-2725.	2.2	31
210	Paralogous metabolism: <scp>S</scp> â€alkyl ysteine degradation in <i>Bacillus subtilis</i> Environmental Microbiology, 2014, 16, 101-117.	3.8	31
211	Affinity labeling of rabbit muscle myosin with a cobalt(III)-adenosine triphosphate complex. Biochemistry, 1974, 13, 2683-2688.	2.5	30
212	Identification of the Escherichia coli cya gene product as authentic adenylate cyclase. Journal of Molecular Biology, 1984, 175, 403-408.	4.2	30
213	Cytoplasmic and Periplasmic Proteomic Signatures of Exponentially Growing Cells of the Psychrophilic Bacterium <i>Pseudoalteromonas haloplanktis</i> Microbiology, 2011, 77, 1276-1283.	3.1	30
214	Linking selenium biogeochemistry to the sulfurâ€dependent biological detoxification of arsenic. Environmental Microbiology, 2012, 14, 1612-1623.	3.8	30
215	The contribution of microbial biotechnology to economic growth and employment creation. Microbial Biotechnology, 2017, 10, 1137-1144.	4.2	30
216	<scp>SARSâ€CoV</scp> â€2 biology and variants: anticipation of viral evolution and what needs to be done. Environmental Microbiology, 2021, 23, 2339-2363.	3.8	30

#	Article	IF	CITATIONS
217	The role of histidine 63 in the catalytic mechanism of Bordetella pertussis adenylate cyclase Journal of Biological Chemistry, 1992, 267, 9816-9820.	3.4	30
218	Toward an understanding of the formylation of initiator tRNA methionine in prokaryotic protein synthesis. II. A two-state model for the 70S ribosome. Biochemistry, 1976, 15, 1362-1369.	2.5	29
219	The Bacillus subtilis genome from gerBC (311 \hat{A}°) to licR (334 \hat{A}°). Microbiology (United Kingdom), 1997, 143, 3313-3328.	1.8	29
220	Sulphur islands in the <i>Escherichia coli</i> genome: markers of the cell's architecture?. FEBS Letters, 2000, 476, 8-11.	2.8	29
221	Cinnamic Acid, an Autoinducer of Its Own Biosynthesis, Is Processed via Hca Enzymes in <i>Photorhabdus luminescens</i> . Applied and Environmental Microbiology, 2008, 74, 1717-1725.	3.1	29
222	Chapter 1 A Phylogenetic View of Bacterial Ribonucleases. Progress in Molecular Biology and Translational Science, 2009, 85, 1-41.	1.7	29
223	Parallel evolution of non-homologous isofunctional enzymes in methionine biosynthesis. Nature Chemical Biology, 2017, 13, 858-866.	8.0	29
224	Genomic Characterization of a Novel Gut Symbiont From the Hadal Snailfish. Frontiers in Microbiology, 2019, 10, 2978.	3.5	29
225	Effect of mild acid pH on the functioning of bacterial membranes in Vibrio cholerae. Proteomics, 2002, 2, 571-579.	2.2	28
226	Conserved transcription factor binding sites of cancer markers derived from primary lung adenocarcinoma microarrays. Nucleic Acids Research, 2005, 33, 409-421.	14.5	28
227	Regulatory role of UvrY in adaptation of <i>Photorhabdus luminescens</i> growth inside the insect. Environmental Microbiology, 2008, 10, 1118-1134.	3.8	28
228	Cells need safety valves. BioEssays, 2009, 31, 769-773.	2.5	28
229	Omnipresent Maxwell's demons orchestrate information management in living cells. Microbial Biotechnology, 2019, 12, 210-242.	4.2	28
230	Fructose catabolism in Xanthomonas campestris pv. campestris. Sequence of the PTS operon, characterization of the fructose-specific enzymes Journal of Biological Chemistry, 1991, 266, 18154-18161.	3.4	28
231	Genomic Changes in Nucleotide and Dinucleotide Frequencies in <i>Pasteurella multocida</i> Cultured Under High Temperature. Genetics, 2002, 161, 1385-1394.	2.9	28
232	Binding of 3'-anthraniloyl-2'-deoxy-ATP to calmodulin-activated adenylate cyclase from Bordetella pertussis and Bacillus anthracis. Journal of Biological Chemistry, 1990, 265, 18902-6.	3.4	28
233	Transcriptional control of polarity in Escherichia coli by cAMP. Molecular Genetics and Genomics, 1984, 195, 96-100.	2.4	27
234	Structure de la région de contrÃ1e du gène de la phosphatase acide (pH 2,5) d'Escherichia coli, un cas exemplaire de régulation négative par l'AMP cyclique. Biochimie, 1987, 69, 215-221.	2.6	27

#	Article	IF	Citations
235	Cloning and expression of mouse-brain calmodulin as an activator of Bordetella pertussis adenylate cyclase in Escherichia coli. Gene, 1989, 80, 145-149.	2.2	27
236	MtnK, methylthioribose kinase, is a starvation-induced protein in Bacillus subtilis. BMC Microbiology, 2001, 1, 15.	3.3	27
237	AstR–AstS, a new two-component signal transduction system, mediates swarming, adaptation to stationary phase and phenotypic variation in Photorhabdus luminescens. Microbiology (United) Tj ETQq1 1 0.784	3 1. \$rgBT	/Owerlock 10
238	Universal biases in protein composition of model prokaryotes. Proteins: Structure, Function and Bioinformatics, 2005, 60, 27-35.	2.6	27
239	Information of the chassis and information of the program in synthetic cells. Systems and Synthetic Biology, 2009, 3, 125-134.	1.0	27
240	Regulation of galactose operon expression: glucose effects and role of cyclic adenosine 3',5'-monophosphate. Journal of Bacteriology, 1981, 146, 149-154.	2.2	27
241	Analysis of the ptsH-ptsl-crr region in Escherichia coli K-12: evidence for the existence of a single transcriptional unit. Gene, 1984, 32, 31-40.	2.2	26
242	Identification of a common domain in calmodulin-activated eukaryotic and bacterial adenylate cyclases. Biochemistry, 1989, 28, 1964-1967.	2.5	26
243	Identification of yrrU as the Methylthioadenosine Nucleosidase Gene in Bacillus subtilis. DNA Research, 1999, 6, 255-264.	3.4	26
244	UMP kinase from the Gram-positive bacterium Bacillus subtilis is strongly dependent on GTP for optimal activity. FEBS Journal, 2003, 270, 3196-3204.	0.2	26
245	Conserved genes in a path from commensalism to pathogenicity: comparative phylogenetic profiles of Staphylococcus epidermidis RP62A and ATCC12228. BMC Genomics, 2006, 7, 112.	2.8	26
246	Structural and Functional Similarities between a Ribulose-1,5-bisphosphate Carboxylase/Oxygenase (RuBisCO)-like Protein from Bacillus subtilis and Photosynthetic RuBisCO. Journal of Biological Chemistry, 2009, 284, 13256-13264.	3.4	26
247	$3\hat{a}\in^2$ - $5\hat{a}\in^2$ Phosphoadenosine phosphate is an inhibitor of PARP-1 and a potential mediator of the lithium-dependent inhibition of PARP-1 <i>iin vivo</i>). Biochemical Journal, 2012, 443, 485-490.	3.7	26
248	Visualizing the invisible: class excursions to ignite children's enthusiasm for microbes. Microbial Biotechnology, 2020, 13, 844-887.	4.2	26
249	Antibodies against synthetic oligopeptides allow identification of the mRNA-maturase encoded by the second intron of the yeast cob-box gene EMBO Journal, 1984, 3, 1769-1772.	7.8	25
250	The catalytic domain of Escherichia coli K-12 adenylate cyclase as revealed by deletion analysis of the cya gene. Molecular Genetics and Genomics, 1994, 243, 409-416.	2.4	25
251	Cloning and sequence of the Bordetella bronchiseptica adenylate cyclase-hemolysin-encoding gene: comparison with the Bordetella pertussis gene. Gene, 1995, 162, 165-166.	2.2	25
252	Transcription Regulation Coupling of the Divergent argG and metY Promoters in Escherichia coli K-12. Journal of Bacteriology, 2003, 185, 3139-3146.	2.2	25

#	Article	IF	Citations
253	The two authentic methionine aminopeptidase genes are differentially expressed in Bacillus subtilis. BMC Microbiology, 2005, 5, 57.	3.3	25
254	Regulation of the Bacillus subtilis ytml Operon, Involved in Sulfur Metabolism. Journal of Bacteriology, 2005, 187, 6019-6030.	2.2	25
255	Affinity Labeling of the Adenosine 5′-Monophosphate Binding Site of Rabbit Muscle Glycogen Phosphorylase b with an Adenosine 5′-Monophosphate-Cobalt(III) Complex. Journal of Biological Chemistry, 1973, 248, 3241-3247.	3.4	25
256	Characterization of Escherichia coli adenylate cyclase mutants with modified regulation. Journal of General Microbiology, 1990, 136, 1825-1831.	2.3	24
257	Mapping of repetitive and non-repetitive DNA probes to chromosomes of the microsporidian Encephalitozoon cuniculi. Gene, 1997, 191, 39-45.	2.2	24
258	Persistent biases in the amino acid composition of prokaryotic proteins. BioEssays, 2006, 28, 726-738.	2.5	24
259	Reminder to deposit DNA sequences. Science, 2016, 352, 780-780.	12.6	24
260	Coping with inevitable accidents in metabolism. Microbial Biotechnology, 2017, 10, 57-72.	4.2	24
261	Immunochemical Analysis of UMP Kinase from Escherichia coli. Journal of Bacteriology, 1999, 181, 833-840.	2.2	24
262	Functional analysis of subunits III and IV of Bacillus subtilis aa3-600 quinol oxidase by in vitro mutagenesis and gene replacement. Biochimica Et Biophysica Acta - Bioenergetics, 1995, 1232, 67-74.	1.0	23
263	Bifunctional structure of two adenylyl cyclases from the myxobacterium Stigmatella aurantiaca. Biochimie, 1997, 79, 757-767.	2.6	23
264	3-phenylpropionate catabolism and the Escherichia coli oxidative stress response. Research in Microbiology, 2005, 156, 312-321.	2.1	23
265	Hon-yaku: a biology-driven Bayesian methodology for identifying translation initiation sites in prokaryotes. BMC Bioinformatics, 2007, 8, 47.	2.6	23
266	Use of a Riboswitch-controlled Conditional Hypomorphic Mutation to Uncover a Role for the Essential csrA Gene in Bacterial Autoaggregation. Journal of Biological Chemistry, 2009, 284, 28738-28745.	3.4	23
267	The logic of metabolism and its fuzzy consequences. Environmental Microbiology, 2014, 16, 19-28.	3.8	23
268	The regulation of Enzyme IIAGIc expression controls adenylate cyclase activity in Escherichia coli. Microbiology (United Kingdom), 2002, 148, 1553-1559.	1.8	23
269	The European Bacillus subtilis genome sequencing project: current status and accessibility of the data from a new World Wide Web site. Microbiology (United Kingdom), 1996, 142, 2987-2991.	1.8	23
270	The role of histidine 63 in the catalytic mechanism of Bordetella pertussis adenylate cyclase. Journal of Biological Chemistry, 1992, 267, 9816-20.	3.4	23

#	Article	IF	CITATIONS
271	From adenylate cyclase to guanylate cyclase. Journal of Molecular Biology, 1992, 225, 933-938.	4.2	22
272	Indigo: a World-Wide-Web review of genomes and gene functions. FEMS Microbiology Reviews, 1998, 22, 207-227.	8.6	22
273	Classification between normal and tumor tissues based on the pair-wise gene expression ratio. BMC Cancer, 2004, 4, 72.	2.6	22
274	Confidence, tolerance, and allowance in biological engineering: The nuts and bolts of living things. BioEssays, 2015, 37, 95-102.	2.5	22
275	A Path toward SARS-CoV-2 Attenuation: Metabolic Pressure on CTP Synthesis Rules the Virus Evolution. Genome Biology and Evolution, 2020, 12, 2467-2485.	2.5	22
276	A New Transmission Route for the Propagation of the SARS-CoV-2 Coronavirus. Biology, 2021, 10, 10.	2.8	22
277	Role of cyclic AMP in regulatory mechanisms in bacteria. Trends in Biochemical Sciences, 1980, 5, 95-96.	7.5	21
278	Structural and functional relationships between Pasteurella multocida and enterobacterial adenylate cyclases. Journal of Bacteriology, 1991, 173, 6265-6269.	2.2	21
279	A pyruvate-stimulated adenylate cyclase has a sequence related to the fes/fps oncogenes and to eukaryotic cyclases. Molecular Microbiology, 1991, 5, 1175-1181.	2.5	21
280	Fructose catabolism in Xanthomonas campestris pv. campestris. Sequence of the PTS operon, characterization of the fructose-specific enzymes. Journal of Biological Chemistry, 1991, 266, 18154-61.	3.4	21
281	Involvement of cyclic AMP and its receptor protein in the sensitivity of Escherichia coli K 12 toward serine. Molecular Genetics and Genomics, 1979, 176, 343-350.	2.4	20
282	Serine sensitivity of Escherichia coli K 12: Partial characterization of a serine resistant mutant that is extremely sensitive to 2-ketobutyrate. Molecular Genetics and Genomics, 1980, 178, 155-164.	2.4	20
283	Intrinsic fluorescence of a truncated Bordetella pertussis adenylate cyclase expressed in Escherichia coli. Biochemistry, 1990, 29, 8126-8130.	2.5	20
284	Analysis of a Bacillus subtilis genome fragment using a co-operative computer system prototype. Gene, 1995, 165, GC37-GC51.	2.2	20
285	Using Codon Usage to Predict Genes Origin: Is the Escherichia coli Outer Membrane a Patchwork of Products from Different Genomes?. DNA Research, 1997, 4, 257-265.	3.4	20
286	Relationship of SARS-CoV to other pathogenic RNA viruses explored by tetranucleotide usage profiling. BMC Bioinformatics, 2003, 4, 43.	2.6	20
287	Proteomic identification of a two-component regulatory system in Pseudoalteromonas haloplanktis TAC125. Extremophiles, 2006, 10, 483-491.	2.3	20
288	Potent and selective inhibitors of Staphylococcus epidermidis tryptophanyl-tRNA synthetase. Journal of Antimicrobial Chemotherapy, 2007, 60, 502-509.	3.0	20

#	Article	IF	CITATIONS
289	SARSâ€CoV â€⊋ variants: Relevance for symptom granularity, epidemiology, immunity (herd, vaccines), virus origin and containment?. Environmental Microbiology, 2020, 22, 2001-2006.	3.8	20
290	Antibodies against a fused 'lacZ-yeast mitochondrial intron' gene product allow identification of the mRNA maturase encoded by the fourth intron of the yeast cob-box gene. EMBO Journal, 1984, 3, 1567-72.	7.8	20
291	Affinity labeling of the adenosine 5'-monophosphate binding site of rabbit muscle glycogen phosphorylase b with an adenosine 5'-monophosphate-cobalt(3) complex. Journal of Biological Chemistry, 1973, 248, 3241-7.	3.4	20
292	Role of 2-ketobutyrate as an alarmone in E. coli K12: Inhibition of adenylate cyclase activity mediated by the phosphoenolpyruvate: Glycose phosphotransferase transport system. Molecular Genetics and Genomics, 1984, 193, 467-472.	2.4	19
293	A locus involved in kanamycin, chloramphenicol and L-serine resistance is located in the bglY-galU region of the Escherichia coli K12 chromosome. Molecular Genetics and Genomics, 1989, 218, 361-363.	2.4	19
294	A Novel H-NS-like Protein from an Antarctic Psychrophilic Bacterium Reveals a Crucial Role for the N-terminal Domain in Thermal Stability. Journal of Biological Chemistry, 2003, 278, 18754-18760.	3.4	19
295	Mutations in the Global Transcription Factor CRP/CAP: Insights from Experimental Evolution and Deep Sequencing. Computational and Structural Biotechnology Journal, 2019, 17, 730-736.	4.1	19
296	Cooperative phenomena in binding and activation of Bordetella pertussis adenylate cyclase by calmodulin Journal of Biological Chemistry, 1993, 268, 1690-1694.	3.4	19
297	Regulation of the early steps of 3-phenylpropionate catabolism in Escherichia coli. Journal of Molecular Microbiology and Biotechnology, 2001, 3, 127-33.	1.0	19
298	Vectors for high conditional expression of cloned genes. Biochimie, 1983, 65, 317-324.	2.6	18
299	2-Ketoglutarate as a possible regulatory metabolite involved in cyclic AMP-dependent catabolite repression in Escherichia coli K12. Biochimie, 1986, 68, 303-310.	2.6	18
300	Regulation of Escherichia Coli Adenylate Cyclase Activity during Hexose Phosphate Transport. Microbiology (United Kingdom), 1996, 142, 575-583.	1.8	18
301	Distinct co-evolution patterns of genes associated to DNA polymerase III DnaE and PolC. BMC Genomics, 2012, 13, 69.	2.8	18
302	From chemical metabolism to life: the origin of the genetic coding process. Beilstein Journal of Organic Chemistry, 2017, 13, 1119-1135.	2.2	18
303	A dynamic molecular model for transfer RNA. FEBS Letters, 1971, 13, 152-156.	2.8	17
304	The map of the cell is in the chromosome. Current Opinion in Genetics and Development, 1997, 7, 852-854.	3.3	17
305	The HcaR regulatory protein of <i>Photorhabdus luminescens</i> affects the production of proteins involved in oxidative stress and toxemia. Proteomics, 2007, 7, 4499-4510.	2.2	17
306	Evaluating the probability of CRISPRâ€based gene drive contaminating another species. Evolutionary Applications, 2020, 13, 1888-1905.	3.1	17

#	Article	IF	CITATIONS
307	Oneâ€carbon metabolism, folate, zinc and translation. Microbial Biotechnology, 2020, 13, 899-925.	4.2	17
308	The Escherichia coli DNA-binding protein H-NS is one of the first proteins to be synthesized after a nutritional upshift. Research in Microbiology, 1995, 146, 5-16.	2.1	16
309	Comparative analysis of the cya locus in enterobacteria and related Gram-negative facultative anaerobes. Biochimie, 1996, 78, 277-287.	2.6	16
310	Cooperative phenomena in binding and activation of Bordetella pertussis adenylate cyclase by calmodulin. Journal of Biological Chemistry, 1993, 268, 1690-4.	3.4	16
311	On the Binding of tRNA to Escherichia coli RNA Polymerase. FEBS Journal, 1979, 99, 187-201.	0.2	15
312	Low copy number plasmid vectors for gene cloning and for monitoring gene expression. FEMS Microbiology Letters, 1986, 37, 193-197.	1.8	15
313	The adenylate cyclase catalytic domain ofStreptomyces coelicoloris carboxy-terminal. FEMS Microbiology Letters, 1993, 114, 145-151.	1.8	15
314	Conformational Transitions within the Calmodulin-Binding Site of Bordetella pertussis Adenylate Cyclase Studied by Time-Resolved Fluorescence of Trp242 and Circular Dichroism. FEBS Journal, 1996, 237, 619-628.	0.2	15
315	Visualizing the proteome of Escherichia coli: an efficient and versatile method for labeling chromosomal coding DNA sequences (CDSs) with fluorescent protein genes. Nucleic Acids Research, 2007, 35, e37-e37.	14.5	15
316	Archives or Palimpsests? Bacterial Genomes Unveil a Scenario for the Origin of Life. Biological Theory, 2007, 2, 52-61.	1.5	15
317	Biological macromolecules labelling with covalent complexes of magnesium analogs. Biochimie, 1973, 55, 17-27.	2.6	14
318	A new technique for selection of sensitive and auxotrophic mutants of E. coli: Isolation of a strain sensitive to an excess of one-carbon metabolites. Molecular Genetics and Genomics, 1977, 150, 293-299.	2.4	14
319	Aspects of the Regulation of Adenylate Cyclase Synthesis in Escherichia coli K12. Microbiology (United) Tj ETQq1	1 0,78431 1.8	 4 rgBT Ove
320	Global analysis of genomic texts: The distribution of AGCT tetranucleotides in the Escherichia coli and Bacillus subtilis genomes predicts translational frameshifting and ribosomal hopping in several genes. Electrophoresis, 1998, 19, 515-527.	2.4	14
321	The Delphic boat or what the genomic texts tell us. Bioinformatics, 1998, 14, 383-383.	4.1	14
322	Pyrophosphate increases the efficiency of enterobactin-dependent iron uptake in Escherichia coli. Biochimie, 1999, 81, 245-253.	2.6	14
323	Queuine, a bacterial-derived hypermodified nucleobase, shows protection in in vitro models of neurodegeneration. PLoS ONE, 2021, 16, e0253216.	2.5	14
324	Temporal evolution of master regulator Crp identifies pyrimidines as catabolite modulator factors. Nature Communications, 2021, 12, 5880.	12.8	14

#	Article	IF	CITATIONS
325	Escherichia coli molecular genetic map (1000 kbp): update I. Molecular Microbiology, 1990, 4, 1443-54.	2.5	14
326	Effect of an intramolecular cross-link on reversible denaturation in tryptophan transfer ribonucleic acid from Escherichia coli. Biochemistry, 1973, 12, 5393-5399.	2.5	13
327	Labelling of biological macromolecules with covalent analogs of magnesium. Biochimie, 1975, 57, 875-880.	2.6	13
328	Escherichia coli molecular genetic map (1000Kbp):update. Molecular Microbiology, 1990, 4, 1443-1454.	2.5	13
329	Mutational analysis of the enzyme IIIGIc of the phosphoenolpyruvate phosphotransferase system in Escherichia coli. Research in Microbiology, 1992, 143, 251-261.	2.1	13
330	Why sequence genomes? The Escherichia coliim broglio. Molecular Microbiology, 1995, 18, 371-376.	2.5	13
331	Repulsion and Metabolic Switches in the Collective Behavior of Bacterial Colonies. Biophysical Journal, 2009, 97, 688-698.	0.5	13
332	A Strong Seasonality Pattern for Covid-19 Incidence Rates Modulated by UV Radiation Levels. Viruses, 2021, 13, 574.	3.3	13
333	<i>In vivo</i> , <i>inÂvitro</i> and <i>in silico</i> : an open space for the development of microbeâ€based applications of synthetic biology. Microbial Biotechnology, 2022, 15, 42-64.	4.2	13
334	A new method for specific labelling of tRNA: Preliminary results on yeast tRNAPhe. Biochimie, 1972, 54, 333-337.	2.6	12
335	Denaturation of UGA suppressor tRNATrp from E. coli. Biochemical and Biophysical Research Communications, 1974, 56, 1-8.	2.1	12
336	Multiple IS insertion sequences near the replication terminus in Escherichia coli K-12. Biochimie, 1991, 73, 1361-1374.	2.6	12
337	Identification of two fructose transport and phosphorylation pathways in Xanthomonas campestris pv. campestris. Molecular Genetics and Genomics, 1991, 227, 465-472.	2.4	12
338	Cloning of the second adenylate cyclase gene (cya2) fromRhizobium melilotiF34: Sequence similarity to eukaryotic cyclases. FEMS Microbiology Letters, 1995, 128, 177-184.	1.8	12
339	Description and application of a rapid method for genomic DNA direct sequencing. FEMS Microbiology Letters, 2001, 199, 229-233.	1.8	12
340	Genomes are covered with ubiquitous 11 bp periodic patterns, the "class A flexible patterns". BMC Bioinformatics, 2005, 6, 206.	2.6	12
341	Bacteria in the ageing gut: did the taming of fire promote a long human lifespan?. Environmental Microbiology, 2018, 20, 1966-1987.	3.8	12
342	Immunity after COVID-19: Protection or sensitization?. Mathematical Biosciences, 2021, 331, 108499.	1.9	12

#	Article	IF	Citations
343	Specific interaction of cobaltic complexes with myosin. FEBS Letters, 1974, 47, 7-10.	2.8	11
344	Transcription - translation coupling and polarity : A possible role of cyclic AMP. Biochimie, 1981, 63, 419-424.	2.6	11
345	In vivo positive effects of exogenous pyrophosphate on Escherichia coli cell growth and stationary phase survival. Research in Microbiology, 1996, 147, 597-608.	2.1	11
346	Specialized microbial databases for inductive exploration of microbial genome sequences. BMC Genomics, 2005, 6, 14.	2.8	11
347	Deciphering global gene expression and regulation strategy in <i>Escherichia coli</i> during carbon limitation. Microbial Biotechnology, 2019, 12, 360-376.	4.2	11
348	Origin of mutants disputed. Nature, 1988, 336, 527-527.	27.8	10
349	Cytosine Methylation Is Not the Major Factor Inducing CpG Dinucleotide Deficiency in Bacterial Genomes. Journal of Molecular Evolution, 2004, 58, 692-700.	1.8	10
350	Zinc, an unexpected integrator of metabolism?. Microbial Biotechnology, 2020, 13, 895-898.	4.2	10
351	Bacterial Niche-Specific Genome Expansion Is Coupled with Highly Frequent Gene Disruptions in Deep-Sea Sediments. PLoS ONE, 2011, 6, e29149.	2.5	10
352	Reversibleinactivation of phenylalanine acceptor activity of yeast tRNAphe by sodium borohydride. Biochemical and Biophysical Research Communications, 1970, 39, 683-690.	2.1	9
353	Multiple states in macromolecules II. Entropic behaviour of tRNA degraded by polynucleotide phosphorylase. FEBS Letters, 1972, 19, 297-300.	2.8	9
354	Structural and exchange properties of "Co(III)-phenanthroline-ATP― a labeling reagent for the active site of ATPases. Bioinorganic Chemistry, 1978, 9, 81-92.	1.1	9
355	mRNA turnover and DNA synthesis: a lesson from bacterial genome comparisons. Molecular Microbiology, 1996, 20, 895-897.	2.5	9
356	Functional consequences of single amino acid substitutions in calmodulin-activated adenylate cyclase of Bordetella pertussis. EMBO Journal, 1991, 10, 1683-8.	7.8	9
357	Antibodies against synthetic oligopeptides allow identification of the mRNA-maturase encoded by the second intron of the yeast cob-box gene. EMBO Journal, 1984, 3, 1769-72.	7.8	9
358	Binding of metal ions to macromolecules through an NMR spectrometric method of investigation. Journal of Theoretical Biology, 1969, 25, 317-330.	1.7	8
359	Regulatory features of tRNAlleu expression in Escherichia coli K12. Biochemical and Biophysical Research Communications, 1979, 90, 1280-1286.	2.1	8
360	Is a metabolic control for the doubling of the macromolecule synthesizing machinery possible. Biochimie, 1979, 61, 45-50.	2.6	8

#	Article	IF	Citations
361	The coordinate expression of polycistronic operons in bacteria. Trends in Biochemical Sciences, 1980, 5, 51-52.	7.5	8
362	The role of H-NS in one carbon metabolism. Biochimie, 1994, 76, 1063-1070.	2.6	8
363	The secE Gene of Helicobacter pylori. Journal of Bacteriology, 2002, 184, 2837-2840.	2.2	8
364	Myopic selection of novel information drives evolution. Current Opinion in Biotechnology, 2009, 20, 504-508.	6.6	8
365	The logic of metabolism. Perspectives in Science, 2015, 6, 15-26.	0.6	8
366	Three overlooked key functional classes for building up minimal synthetic cells. Synthetic Biology, 2021, 6, ysab010.	2.2	8
367	Computation of Antigenicity Predicts SARS-CoV-2 Vaccine Breakthrough Variants. Frontiers in Immunology, 2022, 13, 861050.	4.8	8
368	[31] Inert Co(III) complexes as reagents for nucleotide binding sites. Methods in Enzymology, 1977, 46, 312-321.	1.0	7
369	Modulation of the lactose operon mRNA turnover by inhibitors of dihydrofolate reductase. Biochemical and Biophysical Research Communications, 1978, 84, 769-776.	2.1	7
370	CrpXmutants ofEscherichia coliK-12: Selection and physiological properties. FEMS Microbiology Letters, 1981, 10, 389-393.	1.8	7
371	Mutations inbglY, the structural gene for the DNA-binding protein H1 ofEscherichia coli, increase the expression of the kanamycin resistance gene carried by plasmid pGR71. Molecular Genetics and Genomics, 1992, 233, 184-192.	2.4	7
372	Structural flexibility of the calmodulin-binding locus in Bordetella pertussis adenylate cyclase. Reconstitution of catalytically active species from fragments or inactive forms of the enzyme. FEBS Journal, 1993, 217, 581-586.	0.2	7
373	Expression profiling in reference bacteria: dreams and reality. Genome Biology, 2000, 1, reviews1024.1.	9.6	7
374	The bag or the spindle: the cell factory at the time of systems' biology. Microbial Cell Factories, 2004, 3, 13.	4.0	7
375	PssA is required for α-amylase secretion in Antarctic Pseudoalteromonas haloplanktis. Microbiology (United Kingdom), 2010, 156, 211-219.	1.8	7
376	Proton magnetic resonance studies on 5′- AMP site in glycogen phosphorylase b. FEBS Letters, 1972, 22, 289-293.	2.8	6
377	The specification of the immune response: A general selective model. Molecular Immunology, 1979, 16, 515-526.	2.2	6
378	Nucleotide sequence of a tRNAleuCAG gene from Rhizobium meliloti. Gene, 1987, 55, 153-156.	2.2	6

#	Article	IF	CITATIONS
379	Cloning and characterization of the pH 2.5 acid phosphatase gene, appA: Cyclic AMP mediated negative regulation. Molecular Genetics and Genomics, 1987, 208, 499-505.	2.4	6
380	Antisense expression at theptsH-ptsllocus ofEscherichia coli. FEMS Microbiology Letters, 1989, 57, 35-38.	1.8	6
381	Effects of Site-Directed Mutagenesis of Protolytic Residues in Subunit I ofBacillus subtilis aa3-600 Quinol Oxidase. Role of Lysine 304 in Proton Translocationâ€. Biochemistry, 1999, 38, 2287-2294.	2.5	6
382	Just so genome stories: what does my neighbor tell me?. International Congress Series, 2002, 1246, 3-13.	0.2	6
383	Preliminary evidence for seasonality of Covid-19 due to ultraviolet radiation. F1000Research, 0, 9, 658.	1.6	6
384	Genomes and evolution. Current Issues in Molecular Biology, 2003, 5, 37-42.	2.4	6
385	Multiple states in macromolecules I. Qualitative model for a single nucleation process. FEBS Letters, 1972, 19, 293-296.	2.8	5
386	Fluorescence of tryptophanyl-tRNATrpfromE. coli; An interaction between the indole and tRNA and its dependence on tRNA conformation. FEBS Letters, 1973, 30, 236-238.	2.8	5
387	Generation of immune specificity: A working hypothesis. BioSystems, 1981, 13, 259-266.	2.0	5
388	The phosphoenolpyruvate dependent carbohydrate phosphotransferase system of Escherichia coli. FEMS Microbiology Letters, 1983, 16, 163-167.	1.8	5
389	Molecular characterization of two cya mutations, cya-854 and cyaR1. Journal of Bacteriology, 1989, 171, 5176-5178.	2.2	5
390	From function to sequence, an integrated view of the genome texts. Physica A: Statistical Mechanics and Its Applications, 1999, 273, 92-98.	2.6	5
391	Bacterial DNA strand compositional asymmetry: Response. Trends in Microbiology, 1999, 7, 308.	7.7	5
392	The DB case: pattern matching evidence is not significant. MicroCorrespondence. Molecular Microbiology, 2000, 37, 216-218.	2.5	5
393	The DNA secondary structure of theBacillus subtilisgenome. FEMS Microbiology Letters, 2003, 218, 23-30.	1.8	5
394	Consent insufficient for data releaseâ€"Response. Science, 2019, 364, 446-446.	12.6	5
395	Isobiology: A Variational Principle for Exploring Synthetic Life. ChemBioChem, 2020, 21, 1781-1792.	2.6	5
396	Genetics of the PTS components in Escherichia coli K-12. FEMS Microbiology Reviews, 1989, 63, 61-67.	8.6	5

#	Article	IF	CITATIONS
397	Hypothesis, analysis and synthesis, it's all Greek to me. ELife, 2019, 8, .	6.0	5
398	Structure and evolution of bacterial adenylate cyclase: comparison between Escherichia coli and Erwinia chrysanthemi. Second Messengers and Phosphoproteins, 1988, 12, 7-28.	0.2	5
399	The SARS Case Study: An Alarm Clock?., 0,, 151-162.		4
400	Specification of the immune response: Its suppression induced by chloramphenicol in vitro. Bioscience Reports, 1983, 3, 19-29.	2.4	4
401	The Significance of Split Genes to Developmental Genetics. Advances in Genetics, 1987, 24, 243-284.	1.8	4
402	From genes to clones. Biochimie, 1988, 70, 131.	2.6	4
403	Genetics of the PTS components in Escherichia coli K-12. FEMS Microbiology Letters, 1989, 63, 61-68.	1.8	4
404	Structural and physico-chemical characteristics of Bordetella pertussis adenylate kinase, a tryptophan-containing enzyme. FEBS Journal, 1993, 218, 921-927.	0.2	4
405	METALGEN.DB: metabolism linked to the genome of Escherichia coli, a graphics-oriented database. Bioinformatics, 1993, 9, 315-324.	4.1	4
406	Bacillus Subtilis. , 2001, , 135-144.		4
407	Not every truth is good. EMBO Reports, 2002, 3, 102-104.	4.5	4
408	A Variable Gene in a Conserved Region of the Helicobacter pylori Genome: Isotopic Gene Replacement or Rapid Evolution?. DNA Research, 2008, 15, 163-168.	3.4	4
409	Constraints in the Design of the Synthetic Bacterial Chassis. Methods in Microbiology, 2013, 40, 39-67.	0.8	4
410	Unique tRNA gene profile suggests paucity of nucleotide modifications in anticodons of a deep-sea symbiotic Spiroplasma. Nucleic Acids Research, 2018, 46, 2197-2203.	14.5	4
411	<i>Escherichia coli</i> segments its controls on carbonâ€dependent gene expression into global and specific regulations. Microbial Biotechnology, 2021, 14, 1084-1106.	4.2	4
412	A TY1 element is inserted in the CYR1 control region of Saccharomyces cerevisiae strain AB320. FEBS Letters, 1987, 219, 254-258.	2.8	3
413	By way of introduction: Some constraints of the cell physics that are usually forgotten, but should be taken into account for in silico genome analysis. Biochimie, 1996, 78, 299-301.	2.6	3
414	Genome Diversity: A Grammar of Microbial Genomes. Complexus, 2004, 2, 61-70.	0.6	3

#	Article	IF	CITATIONS
415	Motivated research. EMBO Reports, 2010, 11, 488-488.	4.5	3
416	Genome structures, operating systems and the image of the machine. , 2004, , 195-208.		3
417	The specification of the immune response revisited. Survey of Immunologic Research, 1982, 1, 173-183.	0.4	3
418	From Analog to Digital Computing: Is Homo sapiens' Brain on Its Way to Become a Turing Machine?. Frontiers in Ecology and Evolution, 2022, 10, .	2.2	3
419	Cysteine Dealkylation in <i>Bacillus subtilis</i> by a Novel Flavin-Dependent Monooxygenase. Biochemistry, 2022, 61, 952-955.	2.5	3
420	Explanation of Benveniste. Nature, 1988, 334, 286-286.	27.8	2
421	A brief history of genome research and bioinformatics in France. Bioinformatics, 2000, 16, 65-75.	4.1	2
422	Infection of society. EMBO Reports, 2003, 4, 333-335.	4.5	2
423	<i>Escherichia coli</i> Response to Exogenous Pyrophosphate and Analogs. Journal of Molecular Microbiology and Biotechnology, 2003, 5, 37-45.	1.0	2
424	Nature, artifice and emerging diseases. EMBO Reports, 2009, 10, 418-419.	4.5	2
425	Microbial Biotechnologyâ€2020. Microbial Biotechnology, 2016, 9, 529-529.	4.2	2
426	An Interplay between Metabolic and Physicochemical Constraints: Lessons from the Psychrophilic Prokaryote Genomes., 0,, 208-220.		2
427	A selective theory for the epigenetic specification of the monospecific antibody production in single cell lines. Annales D'immunologie, 1976, 127, 787-804.	0.2	2
428	A parasite vector-host epidemic model for TSE propagation. Medical Science Monitor, 2007, 13, BR59-66.	1.1	2
429	Carbon metabolism and adaptation of hyperalkaliphilic microbes in serpentinizing spring of Manleluag, the Philippines. Environmental Microbiology Reports, 2022, 14, 308-319.	2.4	2
430	Permanence and Change. Sub-Stance, 1983, 12, 61.	0.1	1
431	Cloning and restriction mapping of adenylate cyclase from Brevibacterium liquifaciens. Biochemical Society Transactions, 1989, 17, 778-779.	3.4	1
432	Conserved transcription factor binding sites of cancer markers derived from primary lung adenocarcinoma microarrays. Nucleic Acids Research, 2005, 33, 2764-2764.	14.5	1

#	Article	IF	Citations
433	Request from the International Advisory Committee to DDBJ/EMBL/GenBank. Journal of Virological Methods, 2006, 135, 297.	2.1	1
434	Perfect time or perfect crime?. EMBO Reports, 2010, 11, 74-74.	4.5	1
435	Les gÃ"nes du démon de MaxwellÂ: est-il possible de construire une usine cellulaireÂ?. Comptes Rendus Chimie, 2011, 14, 413-419.	0.5	1
436	From function to structure take the archaeal TRAM. Environmental Microbiology, 2016, 18, 2776-2778.	3.8	1
437	Nature or manufacture: What should we fear most?. Comptes Rendus - Biologies, 2016, 339, 329-335.	0.2	1
438	Biological innovation in the functional landscape of a model regulator, or the lactose operon repressor. Comptes Rendus - Biologies, 2021, 344, 111-126.	0.2	1
439	Annotating bacterial genomes. , 2008, , 165-190.		1
440	Co (III) -ATP Complexes as Affinity Labeling Reagents of Myosin and Coupling Factor-1 ATPases. Jerusalem Symposia on Quantum Chemistry and Biochemistry, 1977, , 283-290.	0.2	1
441	Co(III)-ATP Complexes as Affinity Labeling Reagents of Myosin and Coupling Factor-1 ATPases. Jerusalem Symposia on Quantum Chemistry and Biochemistry, 1977, , 283-290.	0.2	1
442	The adenylate cyclase catalytic domain of Streptomyces coelicolor is carboxy-terminal. FEMS Microbiology Letters, 1993, 114, 145-151.	1.8	1
443	L'invasion du biologisme. Le Débat, 1980, n° 2, 66-81.	0.1	1
444	Règles de réécriture en biologie moléculaire. Le Débat, 1980, n° 3, 111-113.	0.1	1
445	Le pilote fantôme. Le Débat, 1982, n° 20, 123-130.	0.1	1
446	Cyclic AMP in Bacteria: Catabolite Repression and Related Effects., 1985,, 255-272.		1
447	Les bases cérébrales du langage. Le Débat, 1987, n° 47, 158-171.	0.1	1
448	Pour l'unité de l'esprit scientifique. Le Débat, 1993, n° 73, 66-70.	0.1	1
449	Progressing towards the end of progress?. Trends in Biochemical Sciences, 1979, 4, N217-N219.	7.5	0
450	Split genes. Endeavour, 1985, 9, 18-27.	0.4	0

#	Article	IF	CITATIONS
451	Advances in Enzymology, vol. 59. Biochimie, 1987, 69, 906-907.	2.6	О
452	Protein compartmentalization, 1986. Springer series in molecular biology. Biochimie, 1987, 69, 1007.	2.6	0
453	tRNAleu(CAG) fromBordetella pertussis. FEMS Microbiology Letters, 1987, 44, 19-22.	1.8	0
454	Novel Calcium-Binding Proteins, Fundamentals and clinical Implications. Biochimie, 1992, 74, 208-209.	2.6	0
455	Microorganisms in alkaline environments. Biochimie, 1992, 74, 594.	2.6	0
456	Genetics of bacterial diversity. Biochimie, 1992, 74, 594.	2.6	0
457	The natural war. EMBO Reports, 2000, 1, 216-216.	4.5	0
458	On our tiniest foes. EMBO Reports, 2001, 2, 468-469.	4.5	0
459	Génomes et évolution. Annales De L'Institut Pasteur / Actualités, 2002, 11, 9-18.	0.1	O
460	Bacterial Genomics in the Study of Virulence. , 2002, , 341-353.		0
461	Beneficial biological warfare. EMBO Reports, 2006, 7, 767-767.	4.5	O
462	Re: Request from the international advisory committee to DDBJ/EMBL/GenBank. Journal of Medical Virology, 2006, 78, 995-995.	5.0	0
463	A challenge to vaccinology: Living organisms trap information. Vaccine, 2009, 27, G13-G16.	3.8	O
464	A path from predation to mutualism. Molecular Microbiology, 2010, 77, 1346-1350.	2.5	0
465	Synthetic biology's flywheel. EMBO Reports, 2012, 13, 92-92.	4.5	О
466	Multiple Clocks in the Evolution of Living Organisms. Grand Challenges in Biology and Biotechnology, 2018, , 101-118.	2.4	0
467	Conceptual sequel to biological expeditions at the time of global changes. Environmental Microbiology Reports, 2019, 11, 38-40.	2.4	0
468	From Minimal to Minimized Genomes: Functional Design of Microbial Cell Factories. , 2020, , 177-210.		0

#	Article	IF	CITATIONS
469	CONJECTURES AND REFUTATIONS., 1979, , 243-246.		0
470	La permanence et le changement. Le Débat, 1981, n° 15, 106-113.	0.1	0
471	Expérience et méthode. Le Débat, 1985, n° 35, 80-86.	0.1	0
472	Nature ou culture�. Le Débat, 1985, n° 36, 20-24.	0.1	0
473	L'explication de la vie : perspectives et questions. Le Débat, 1990, n° 60, 270-274.	0.1	0
474	Are Purine Nucleoside Triphosphate Cyclases an Example of Convergent Evolution?., 1992,, 365-377.		0
475	Structural and Functional Organization of the Catalytic Domain of a Bacterial Toxin: bordetella Pertussis Adenylate Cyclase., 1992,, 335-344.		0
476	Organization of the European Bacillus subtilis Genome Sequencing Project., 1998,, 457-467.		0
477	Integrated Genome Informatics. , 1998, , 567-582.		0
478	Conjectures and Refutations. , 0, , 289-294.		0
479	Labeling and inhibition of myosin by 'in situ-oxidized' and presynthesized Co(III) complexes. FEBS Letters, 1977, 73, 105-8.	2.8	0
480	Escherichia coli and Saccharomyces cerevisiae adenylate cyclases: a case of phylogenetic convergence?. Isozymes, 1987, 15, 141-51.	0.2	O