
Wonil Oh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5434545/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Protective effects of human umbilical cord blood‑derived mesenchymal stem cells against dexamethasone‑induced apoptotic cell death in hair follicles. International Journal of Molecular Medicine, 2020, 45, 556-568.	4.0	5
2	Galectin-3 Secreted by Human Umbilical Cord Blood-Derived Mesenchymal Stem Cells Reduces Aberrant Tau Phosphorylation in an Alzheimer Disease Model. Stem Cells International, 2020, 2020, 1-14.	2.5	20
3	Soluble PTX3 of Human Umbilical Cord Blood-Derived Mesenchymal Stem Cells Attenuates Hyperoxic Lung Injury by Activating Macrophage Polarization in Neonatal Rat Model. Stem Cells International, 2020, 2020, 1-18.	2.5	14
4	Prospects for the therapeutic development of umbilical cord blood-derived mesenchymal stem cells. World Journal of Stem Cells, 2020, 12, 1511-1528.	2.8	19
5	Thrombospondin-1 secreted by human umbilical cord blood-derived mesenchymal stem cells rescues neurons from synaptic dysfunction in Alzheimer's disease model. Scientific Reports, 2018, 8, 354.	3.3	57
6	Effect of growth differentiation factor-15 secreted by human umbilical cord blood-derived mesenchymal stem cells on amyloid beta levels in inAvitro and in vivo models of Alzheimer's disease. Biochemical and Biophysical Research Communications, 2018, 504, 933-940.	2.1	29
7	Early, but not late, treatment with human umbilical cord blood-derived mesenchymal stem cells attenuates cisplatin nephrotoxicity through immunomodulation. American Journal of Physiology - Renal Physiology, 2017, 313, F984-F996.	2.7	20
8	hMSCs suppress neutrophil-dominant airway inflammation in a murine model of asthma. Experimental and Molecular Medicine, 2017, 49, e288-e288.	7.7	28
9	Optimization of culture conditions for rapid clinicalâ€scale expansion of human umbilical cord bloodâ€derived mesenchymal stem cells. Clinical and Translational Medicine, 2017, 6, 38.	4.0	19
10	Effect of Single and Double Administration of Human Umbilical Cord Blood-Derived Mesenchymal Stem Cells Following Focal Cerebral Ischemia in Rats. Experimental Neurobiology, 2017, 26, 55-65.	1.6	19
11	Downregulation of Melanoma Cell Adhesion Molecule (MCAM/CD146) Accelerates Cellular Senescence in Human Umbilical Cord Blood-Derived Mesenchymal Stem Cells. Stem Cells Translational Medicine, 2016, 5, 427-439.	3.3	56
12	Human umbilical cord bloodâ€derived mesenchymal stem cells improve functional recovery through thrombospondin1, pantraxin3, and vascular endothelial growth factor in the ischemic rat brain. Journal of Neuroscience Research, 2015, 93, 1814-1825.	2.9	33
13	Autocrine Action of Thrombospondin-2 Determines the Chondrogenic Differentiation Potential and Suppresses Hypertrophic Maturation of Human Umbilical Cord Blood-Derived Mesenchymal Stem Cells. Stem Cells, 2015, 33, 3291-3303.	3.2	39
14	The Effect of Donor-Dependent Administration of Human Umbilical Cord Blood-Derived Mesenchymal Stem Cells following Focal Cerebral Ischemia in Rats. Experimental Neurobiology, 2015, 24, 358-365.	1.6	13
15	The Effect of Umbilical Cord Blood Derived Mesenchymal Stem Cells in Monocrotaline-induced Pulmonary Artery Hypertension Rats. Journal of Korean Medical Science, 2015, 30, 576.	2.5	20
16	GDF-15 Secreted from Human Umbilical Cord Blood Mesenchymal Stem Cells Delivered Through the Cerebrospinal Fluid Promotes Hippocampal Neurogenesis and Synaptic Activity in an Alzheimer's Disease Model. Stem Cells and Development, 2015, 24, 2378-2390.	2.1	93
17	Conditioned Media from Human Umbilical Cord Blood-Derived Mesenchymal Stem Cells Inhibits Melanogenesis by Promoting Proteasomal Degradation of MITF. PLoS ONE, 2015, 10, e0128078.	2.5	21
18	Effect of preemptive treatment with human umbilical cord blood-derived mesenchymal stem cells on the development of renal ischemia-reperfusion injury in mice. American Journal of Physiology - Renal Physiology, 2014, 307, F1149-F1161.	2.7	36

WONIL OH

#	Article	IF	CITATIONS
19	Low immunogenicity of allogeneic human umbilical cord blood-derived mesenchymal stem cells in vitro and in vivo. Biochemical and Biophysical Research Communications, 2014, 446, 983-989.	2.1	152
20	Transplantation of Human Umbilical Cord Blood-Derived Mesenchymal Stem Cells or Their Conditioned Medium Prevents Bone Loss in Ovariectomized Nude Mice. Tissue Engineering - Part A, 2013, 19, 685-696.	3.1	46
21	Comparative Analysis of Human Mesenchymal Stem Cells from Bone Marrow, Adipose Tissue, and Umbilical Cord Blood as Sources of Cell Therapy. International Journal of Molecular Sciences, 2013, 14, 17986-18001.	4.1	504
22	Thrombospondin-2 secreted by human umbilical cord blood-derived mesenchymal stem cells promotes chondrogenic differentiation. Stem Cells, 2013, 31, 2136-2148.	3.2	102
23	Cryopreserved Cord Blood Progenitors and Their Cell Adhesion Molecules Are Increased by Coculture With Osteoblasts and Parathyroid Hormone. Journal of Pediatric Hematology/Oncology, 2013, 35, e229-e233.	0.6	2
24	Human umbilical cord blood-derived mesenchymal stem cells improve neuropathology and cognitive impairment in an Alzheimer's disease mouse model through modulation of neuroinflammation. Neurobiology of Aging, 2012, 33, 588-602.	3.1	240
25	Human umbilical cord blood–derived mesenchymal stem cell transplantation attenuates severe brain injury by permanent middle cerebral artery occlusion in newborn rats. Pediatric Research, 2012, 72, 277-284.	2.3	112
26	Umbilical cord blood mesenchymal stem cells protect amyloid-β42 neurotoxicity <i>via</i> paracrine. World Journal of Stem Cells, 2012, 4, 110.	2.8	28
27	Therapeutic effects of human umbilical cord blood-derived mesenchymal stem cells after intrathecal administration by lumbar puncture in a rat model of cerebral ischemia. Stem Cell Research and Therapy, 2011, 2, 38.	5.5	110
28	Galectin-3 Secreted by Human Umbilical Cord Blood-Derived Mesenchymal Stem Cells Reduces Amyloid-Beta42 Neurotoxicity In Vitro. Biophysical Journal, 2011, 100, 415a.	0.5	2
29	CXC chemokine receptor 1 enhances the ability of human umbilical cord blood-derived mesenchymal stem cells to migrate toward gliomas. Biochemical and Biophysical Research Communications, 2011, 407, 741-746.	2.1	68
30	Intratracheal Transplantation of Human Umbilical Cord Blood-Derived Mesenchymal Stem Cells Dose-Dependently Attenuates Hyperoxia-Induced Lung Injury in Neonatal Rats. Cell Transplantation, 2011, 20, 1843-1854.	2.5	130
31	GD2 expression is closely associated with neuronal differentiation of human umbilical cord blood-derived mesenchymal stem cells. Cellular and Molecular Life Sciences, 2010, 67, 1845-1858.	5.4	47
32	Galectinâ€3 secreted by human umbilical cord bloodâ€derived mesenchymal stem cells reduces amyloidâ€Î²42 neurotoxicity in vitro. FEBS Letters, 2010, 584, 3601-3608.	2.8	44
33	Microporation is a valuable transfection method for efficient gene delivery into human umbilical cord blood-derived mesenchymal stem cells. BMC Biotechnology, 2010, 10, 38.	3.3	37
34	Irradiation Enhances the Tumor Tropism and Therapeutic Potential of Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand-Secreting Human Umbilical Cord Blood-Derived Mesenchymal Stem Cells in Glioma Therapy. Stem Cells, 2010, 28, 2217-2228.	3.2	117
35	Application of human umbilical cord blood-derived mesenchymal stem cells in disease models. World Journal of Stem Cells, 2010, 2, 34.	2.8	75
36	Overexpression of CXC Chemokine Receptors Is Required for the Superior Glioma-Tracking Property of Umbilical Cord Blood-Derived Mesenchymal Stem Cells. Stem Cells and Development, 2009, 18, 511-520.	2.1	84

WONIL OH

#	Article	IF	CITATIONS
37	Down-regulation of CD105 is associated with multi-lineage differentiation in human umbilical cord blood-derived mesenchymal stem cells. Biochemical and Biophysical Research Communications, 2009, 381, 676-681.	2.1	90
38	Human Umbilical Cord Blood-Derived Mesenchymal Stem Cells Attenuate Hyperoxia-Induced Lung Injury in Neonatal Rats. Cell Transplantation, 2009, 18, 869-886.	2.5	219
39	Brainâ€derived neurotrophic factor stimulates the neural differentiation of human umbilical cord bloodâ€derived mesenchymal stem cells and survival of differentiated cells through MAPK/ERK and PI3K/Aktâ€dependent signaling pathways. Journal of Neuroscience Research, 2008, 86, 2168-2178.	2.9	146
40	Immunological properties of umbilical cord blood-derived mesenchymal stromal cells. Cellular Immunology, 2008, 251, 116-123.	3.0	122
41	Gene Therapy Using TRAIL-Secreting Human Umbilical Cord Blood–Derived Mesenchymal Stem Cells against Intracranial Glioma. Cancer Research, 2008, 68, 9614-9623.	0.9	257
42	Efficient Intracytoplasmic Labeling of Human Umbilical Cord Blood Mesenchymal Stromal Cells with Ferumoxides. Cell Transplantation, 2007, 16, 849-857.	2.5	29
43	Effect of Aging on the Pluripotential Capacity of Human Bone Marrow Derived Mesenchymal Stem Cells. The Journal of the Korean Orthopaedic Association, 2007, 42, 701.	0.1	1
44	Mesenchymal stem cells feeder layer from human umbilical cord blood for ex vivo expanded growth and proliferation of hematopoietic progenitor cells. Annals of Hematology, 2006, 85, 212-225.	1.8	107