
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5434462/publications.pdf Version: 2024-02-01

HWE RUDCHAUS

#	Article	IF	CITATIONS
1	Can Graphene Act as a (Noble) Metal-free Catalyst?. Current Physical Chemistry, 2022, 12, 2-10.	0.1	3
2	Adsorption of water on epitaxial graphene. Journal of Materials Research, 2021, 36, 129-139.	1.2	6
3	Adsorption and reaction kinetics of SO2 on graphene: An ultrahigh vacuum surface science study. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2021, 39, .	0.9	6
4	Adsorption of water on epitaxial graphene. Journal of Materials Research, 2021, 36, 1-11.	1.2	0
5	Adsorption of Formic Acid on CH3NH3PbI3 Lead–Halide Organic–Inorganic Perovskites. Journal of Physical Chemistry C, 2019, 123, 22873-22886.	1.5	5
6	Water adsorption on Al doped silicatene films grown on Mo(112). Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2019, 37, 041507.	0.9	1
7	Gas-surface interactions on two-dimensional crystals. Surface Science Reports, 2019, 74, 141-177.	3.8	16
8	Desulfurization-Related Surface Chemistry on Two-Dimensional Silica Films: Adsorption of Thiophene and Short-Chain Alkanes on Silicatene. Journal of Physical Chemistry C, 2018, 122, 8244-8253.	1.5	7
9	Unexpected high binding energy of CO ₂ on CH ₃ NH ₃ PbI ₃ lead-halide organic–inorganic perovskites <i>via</i> bicarbonate formation. Chemical Communications, 2018, 54, 9949-9952.	2.2	18
10	Adsorption of alcohols on a two-dimensional SiO2 single crystal – Alcohol adsorption on silicatene. Chemical Physics Letters, 2017, 689, 105-110.	1.2	4
11	Effects of the support on the desorption kinetics of <i>n</i> -pentane from graphene: An ultrahigh vacuum adsorption study. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2017, 35, .	0.9	9
12	Benzene adsorption on two-dimensional silica films – Benzene on silicatene. Chemical Physics Letters, 2017, 685, 490-495.	1.2	5
13	Adsorption of <i>n</i> -butane on graphene/Ru(0001)—A molecular beam scattering study. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2016, 34, .	0.9	11
14	Adsorption of Water on Two-Dimensional Crystals: Water/Graphene and Water/Silicatene. Inorganics, 2016, 4, 10.	1.2	11
15	Adsorption Kinetics and Dynamics of CO ₂ on Ru(0001) Supported Graphene Oxide. Journal of Physical Chemistry C, 2016, 120, 28049-28056.	1.5	15
16	Adsorption kinetics of benzene on graphene: An ultrahigh vacuum study. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2016, 34, .	0.9	20
17	Water adsorption on two-dimensional silica films. Applied Surface Science, 2016, 364, 822-828.	3.1	10
18	Support effects in the adsorption of water on CVD graphene: an ultra-high vacuum adsorption study. Chemical Communications, 2015, 51, 11463-11466.	2.2	26

#	Article	IF	CITATIONS
19	REACTIVITY AND MORPHOLOGY OF Ni, Mo, AND Ni–Mo OXIDE CLUSTERS SUPPORTED ON MCM-48 TOWARD THIOPHENE HYDRODESULPHURIZATION. Surface Review and Letters, 2014, 21, 1450060.	0.5	1
20	Surface chemistry of CO2 – Adsorption of carbon dioxide on clean surfaces at ultrahigh vacuum. Progress in Surface Science, 2014, 89, 161-217.	3.8	139
21	Adsorption of water on graphene/Ru(0001)—an experimental ultra-high vacuum study. Chemical Communications, 2014, 50, 7698-7701.	2.2	21
22	Butane Adsorption on Silica Supported MoOx Clusters Nanofabricated by Electron Beam Lithography. ACS Symposium Series, 2013, , 295-310.	0.5	0
23	Surface Science Studies of Carbon Dioxide Chemistry. , 2013, , 27-47.		8
24	Benzene adsorption on Ru(0001) and graphene/Ru(0001)—How to synthesize epitaxial graphene without STM or LEED?. Chemical Physics Letters, 2013, 590, 146-152.	1.2	28
25	Carbon dioxide adsorption on MgO(001)–CO2 kinetics and dynamics. Surface Science, 2013, 616, 171-177.	0.8	27
26	Applications of electron beam lithography in surface science and catalysis – model-nano-array catalysts. Catalysis, 2013, , 141-171.	0.6	1
27	Characterization of Ni oated WS ₂ Nanotubes for Hydrodesulfurization Catalysis. Israel Journal of Chemistry, 2012, 52, 1053-1062.	1.0	11
28	Identifying rims along nano-sized clusters as catalytically active sites – The case of CuOx/silica model catalysts nanofabricated by electron beam lithography. Chemical Physics Letters, 2012, 544, 70-72.	1.2	4
29	Adsorption Dynamics of CO on Silica Supported CuO _{<i>x</i>} Clusters: Utilizing Electron Beam Lithography To Study Methanol Synthesis Model Systems. Journal of Physical Chemistry C, 2012, 116, 5792-5801.	1.5	10
30	Rim Effects in the Adsorption of CO ₂ on Silica-Supported Copper Oxide Clusters: Identifying Active Sites Utilizing Electron Beam Lithography. Journal of Physical Chemistry C, 2012, 116, 18930-18936.	1.5	6
31	Synthesis and characterization of WS2 nanotube supported cobalt catalyst for hydrodesulfurization. Materials Research Bulletin, 2012, 47, 1653-1660.	2.7	31
32	Adsorption Dynamics of CO on Silica-Supported Cu Clusters: A Molecular Beam Scattering Study. Journal of Physical Chemistry C, 2011, 115, 16590-16597.	1.5	7
33	Adsorption dynamics of CO on copper and gold clusters supported on silica – How special is nanogold?. Chemical Physics Letters, 2011, 517, 59-61.	1.2	6
34	Adsorption of water on a hydrophobic surface – The case of antimony(111). Chemical Physics Letters, 2011, 517, 46-50.	1.2	16
35	Effect of carbon nanotubes' crystal structure on adsorption kinetics of small molecules. Journal of Thermal Analysis and Calorimetry, 2011, 106, 123-128.	2.0	3
36	Adsorption kinetics of small molecules on selenium foil. Surface Science, 2011, 605, 898-902.	0.8	3

#	Article	IF	CITATIONS
37	Adsorption and dissociation kinetics of alkanes on CaO(100). Surface Science, 2011, 605, 1537-1543.	0.8	5
38	Siteâ€specific Surface Chemistry on Nanotubes. Israel Journal of Chemistry, 2010, 50, 449-452.	1.0	3
39	Adsorption Dynamics of CO on Silica Supported Gold Clusters: Cluster Size Effects in Molecular Beam Scattering Experiments. Catalysis Letters, 2010, 134, 228-232.	1.4	13
40	Adsorption kinetics and dynamics of CO on silica supported Au nanoclusters—Utilizing physical vapor deposition and electron beam lithography. Journal of Molecular Catalysis A, 2010, 321, 101-109.	4.8	13
41	Adsorption of thiophene on silica-supported Mo clusters. Surface Science, 2010, 604, 1221-1229.	0.8	15
42	Preparation and Characterization of Nanomaterials for Sustainable Energy Production. ACS Nano, 2010, 4, 5517-5526.	7.3	163
43	Adsorption and reaction kinetics of small organic molecules on WS2 nanotubes: An ultra-high vacuum study. Chemical Physics Letters, 2009, 479, 109-112.	1.2	9
44	Gas–surface interactions with nanocatalysts: Particle size effects in the adsorption dynamics of CO on supported gold clusters. Chemical Physics Letters, 2009, 483, 250-253.	1.2	19
45	Adsorption of Thiophene on Inorganic MoS2 Fullerene-Like Nanoparticles. Catalysis Letters, 2009, 129, 66-70.	1.4	17
46	Multi-site kinetic Monte Carlo simulations of thermal desorption spectroscopy data. Surface Science, 2009, 603, 2494-2501.	0.8	10
47	Surface science perspective of carbon dioxide chemistry—Adsorption kinetics and dynamics of CO2 on selected model surfaces. Catalysis Today, 2009, 148, 212-220.	2.2	58
48	Adsorption kinetics of small organic molecules on thick and thinner layers of carbon nanotubes. Chemical Physics Letters, 2009, 470, 300-303.	1.2	5
49	Adsorption kinetics of methanol in carbon nanotubes revisited – solvent effects and pitfalls in ultra-high vacuum surface science experiments. Chemical Physics Letters, 2009, 473, 131-134.	1.2	10
50	Possible effect of carbon nanotube diameter on gas–surface interactions – The case of benzene, water, and n-pentane adsorption on SWCNTs at ultra-high vacuum conditions. Chemical Physics Letters, 2009, 476, 227-231.	1.2	26
51	CO Adsorption on FeO x Nanoclusters Supported on HOPG—Effect of Oxide Formation on Catalytic Activity. Catalysis Letters, 2008, 120, 179-183.	1.4	10
52	Reactive and Non-reactive Interactions of Thiophene with WS2 Fullerene-like Nanoparticles: An Ultra-high Vacuum Surface Chemistry Study. Catalysis Letters, 2008, 125, 236-242.	1.4	13
53	Adsorption dynamics and kinetics of CO ₂ on Fe/FeO _{<i>x</i>} nanoclusters supported on HOPG. Surface and Interface Analysis, 2008, 40, 893-898.	0.8	13
54	Adsorption of water on JSCâ€1A (simulated moon dust samples)—a surface science study. Surface and Interface Analysis, 2008, 40, 1423-1429.	0.8	11

#	Article	IF	CITATIONS
55	Adsorption kinetics and dynamics of small organic molecules on a silica wafer: Butane, pentane, nonane, thiophene, and methanol adsorption on SiO2/Si(111). Applied Surface Science, 2008, 254, 5271-5275.	3.1	23
56	Molecular beam scattering of CO on iron oxide clusters supported on graphite (HOPG). Surface Science, 2008, 602, 811-818.	0.8	6
57	Adsorption Kinetics and Dynamics of CO, NO, and CO ₂ on Reduced CaO(100). Journal of Physical Chemistry C, 2008, 112, 7390-7400.	1.5	53
58	Unexpected bond activation of small organic molecules on a metal oxide—butane/CaO(100). Chemical Communications, 2008, , 4073.	2.2	2
59	Adsorption Kinetics of Alcohols on Single-Wall Carbon Nanotubes: An Ultrahigh Vacuum Surface Chemistry Study. Journal of Physical Chemistry C, 2008, 112, 10114-10124.	1.5	34
60	Reactivity Screening of Anatase TiO ₂ Nanotubes Array and Anatase Thin Films: A Surface Chemistry Point of View. ACS Symposium Series, 2008, , 139-151.	0.5	2
61	Unexpected Adsorption of Oxygen on TiO2Nanotube Arrays:Â Influence of Crystal Structure. Nano Letters, 2007, 7, 1091-1094.	4.5	75
62	Adsorption Dynamics of Alkanes on Single-Wall Carbon Nanotubes:  A Molecular Beam Scattering Study. Journal of Physical Chemistry C, 2007, 111, 8043-8049.	1.5	33
63	Molecular beam scattering of linear and branched butane on graphite (HOPG). Surface Science, 2007, 601, 3421-3425.	0.8	14
64	CO2 adsorption on Cr(110) and Cr2O3(0001)/Cr(110). Applied Surface Science, 2007, 253, 7108-7114.	3.1	20
65	Methanol adsorption in carbon nanotubes. Chemical Physics Letters, 2007, 442, 344-347.	1.2	33
66	Adsorption kinetics of thiophene on single-walled carbon nanotubes (CNTs). Chemical Physics Letters, 2007, 447, 121-126.	1.2	33
67	Adsorption of iso-/n-butane on an anatase thin film: a molecular beam scattering and TDS study. Catalysis Letters, 2007, 116, 9-14.	1.4	10
68	CO Oxidation on Anatase TiO2 Nanotubes Array and the Effect of Defects. Catalysis Letters, 2007, 118, 118-122.	1.4	13
69	Reactivity screening of silica. Applied Surface Science, 2007, 253, 4860-4865.	3.1	25
70	Adsorption kinetics of alkanes on TiO2 nanotubesarray – structure–activity relationship. Surface Science, 2007, 601, 4620-4628.	0.8	25
71	Adsorption of CO2 on oxidized, defected, hydrogen and oxygen covered rutile (1 ? 1)-TiO2(110). Physical Chemistry Chemical Physics, 2006, 8, 4805.	1.3	49
72	Effect of oxygen vacancy sites on CO2 adsorption dynamics: The case of rutile (1×1)-TiO2 (110). Chemical Physics Letters, 2006, 422, 461-465.	1.2	23

#	Article	IF	CITATIONS
73	Atomistic modeling of Zn deposition on the low index faces of Cu. Surface Science, 2006, 600, 195-204.	0.8	18
74	Adsorption dynamics of CO2 on Cu(110): A molecular beam study. Surface Science, 2006, 600, 583-590.	0.8	44
75	CO2 adsorption on the bimetallic Zn-on-Cu(110) system. Surface Science, 2006, 600, 1870-1876.	0.8	12
76	Adsorption of iso-butane on ZnO(0001)–Zn. Surface Science, 2006, 600, 4855-4859.	0.8	14
77	Adsorption of CO2 on pristine Zn–ZnO(0001) and defected Zn–ZnO(0001): A thermal desorption spectroscopy study. Surface Science, 2005, 577, 158-166.	0.8	55
78	Structure–activity relationship: the case of CO2 adsorption on H/Zn–ZnO(0001). Chemical Physics Letters, 2005, 403, 42-46.	1.2	18
79	Particle size effects in the adsorption dynamics of CO: The structure–activity relationship in the case of Cu/Zn–ZnO. Chemical Physics Letters, 2005, 410, 131-135.	1.2	13
80	Indications for Metal-support Interactions: The Case of CO2Adsorption on Cu/ZnO(0001). Catalysis Letters, 2005, 103, 219-223.	1.4	26
81	Adsorption of CO on the copper-precovered ZnO(0001) surface: A molecular-beam scattering study. Journal of Chemical Physics, 2005, 123, 184716.	1.2	26
82	Adsorption dynamics of CO2 on copper-precovered ZnO(0001)–Zn: A molecular-beam scattering and thermal-desorption spectroscopy study. Journal of Chemical Physics, 2005, 123, 204710.	1.2	12
83	Adsorption dynamics of CO2 on Zn-ZnO(0001): A molecular beam study. Journal of Chemical Physics, 2005, 122, 044705.	1.2	55
84	ADSORPTION DYNAMICS OFCO2ON HYDROGEN PRECOVEREDZn-ZnO(0001): A MOLECULAR BEAM STUDY. Surface Review and Letters, 2004, 11, 521-529.	0.5	10
85	The adsorption of hydrogen on the rutile TiO2(110) surface. Physical Chemistry Chemical Physics, 2004, 6, 4203-4207.	1.3	59
86	Stabilization of Polar ZnO Surfaces: Validating Microscopic Models by Using CO as a Probe Molecule. Physical Review Letters, 2003, 90, 106102.	2.9	164
87	Adsorption of CO on rutile (1×1)-TiO2(110): a molecular beam study. Surface Science, 2003, 544, 170-182.	0.8	28
88	Kinetic Monte Carlo simulations of the autocatalytic adsorption effect: CO on ZnO. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2003, 21, 1284-1289.	0.9	14
89	Coadsorption of CO and hydrogen on the Zn-terminated surface of ZnO: A molecular beam study. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2003, 21, 1322-1325.	0.9	11
90	MONTE CARLO SIMULATION OF ADSORPTION PROBABILITIES: THE CASE OF CO/DISORDERED–Cu(110) AND CO/O–Ir(110). Surface Review and Letters, 2003, 10, 7-12.	0.5	16

#	Article	IF	CITATIONS
91	Effect of defects and pre-adsorbates on adsorption probabilities: a Monte Carlo simulation point of view. Surface Science, 2002, 507-510, 736-741.	0.8	23
92	Adsorption dynamics of CO on Cu(110): a molecular beam study. Surface Science, 2001, 474, 114-128.	0.8	39
93	Interaction of hydrogen with metal oxides: the case of the polar ZnO(0001) surface. Surface Science, 2001, 486, L502-L506.	0.8	90
94	MONTE CARLO SIMULATION OF THE ADSORBATE- ASSISTED ADSORPTION IN THE CASE OF CO/ZnO. Surface Review and Letters, 2001, 08, 353-360.	0.5	23
95	Oxygen interaction with disordered and nanostructured Ag(001) surfaces. Journal of Chemical Physics, 2001, 115, 3346-3355.	1.2	47
96	Adsorption dynamics of CO on the polar surfaces of ZnO. Journal of Chemical Physics, 2000, 113, 6334-6343.	1.2	67
97	Phase transition of dissociatively adsorbed oxygen on Ag(001). Physical Review B, 2000, 61, 213-227.	1.1	108
98	Chemisorption of isobutane and neopentane on Ir(110). Surface Science, 2000, 446, 46-54.	0.8	22
99	Self-accelerating kinetics of CO2 formation on Ir(110). Surface Science, 1998, 396, 273-283.	0.8	17
100	Breakdown of normal energy scaling at high impact energy for O2 on Ag(001). Surface Science, 1998, 408, L693-L697.	0.8	27
101	CO oxidation by atomically adsorbed oxygen on Ag(110) in the temperature range 100–300 K. Surface Science, 1997, 370, 17-31.	0.8	37
102	HREELS study of CO oxidation on Ag(001) by O2 or O. Surface Science, 1997, 374, 1-8.	0.8	34
103	Effect of preadsorbed oxygen on the adsorption of CO on Ir(110). Surface Science, 1997, 384, L869-L874.	0.8	32
104	The influence of surface reconstructions on the CO oxidation reaction rate for the surface. Surface Science, 1996, 352-354, 201-205.	0.8	22
105	Oxidation of CO by molecular oxygen adsorbed on Ag(110). Surface Science, 1996, 352-354, 253-257.	0.8	20
106	Evidence for the oxidation of CO by molecular oxygen adsorbed on Ag(110). Surface Science, 1996, 364, 109-121.	0.8	33
107	A molecular beam relaxation spectroscopy study of CO adsorption on Ag(110) and Pt(111). Surface Science, 1995, 331-333, 116-120.	0.8	26
108	Evidence for two kinetically distinct atomic oxygen species on Ag(110): a molecular beam study of the CO oxidation reaction. Surface Science, 1995, 338, L869-L874.	0.8	35

#	Article	IF	CITATIONS
109	The ionic-to-neutral transition in alkali metal adsorption: Potassium on Ag(100). Surface Science, 1990, 234, L271-L274.	0.8	25