
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5434045/publications.pdf Version: 2024-02-01

LI HWAN LEONG

#	Article	IF	CITATIONS
1	Flow regime transition criteria for vertical downward two-phase flow in rectangular channel. Nuclear Engineering and Technology, 2022, 54, 546-553.	1.1	2
2	Direct transformation of ReO ₃ nanorods into ReS ₂ nanosheets on carbon fibres for modulating solid–gas interactions. CrystEngComm, 2022, 24, 2036-2041.	1.3	2
3	A novel variable-height-pinfin isothermal heat sink for densely-packed concentrated photovoltaic systems. Energy Conversion and Management, 2022, 258, 115519.	4.4	8
4	Microwave transmission characteristics of carbon nanofiber films with different micrometer-scale thickness. Carbon, 2021, 173, 419-426.	5.4	3
5	Numerical evaluation of the range of performance deterioration in a multi-port mini-channel heat exchanger due to refrigerant mal-distribution in the header. Applied Thermal Engineering, 2021, 185, 116429.	3.0	8
6	Manufacturing of a corrugated double-layered tube for the high-performance compact heat exchanger. International Journal of Advanced Manufacturing Technology, 2021, 112, 2065-2080.	1.5	3
7	A Review of Models for Estimation of Moisture Evaporation Rate from Clothes Inside a Clothes Dryer. International Journal of Air-Conditioning and Refrigeration, 2021, 29, .	0.8	4
8	Molecular dynamics simulations of homogeneous condensation and thermophysical properties of HFO1123 and its binary blends with HFC134a at 273.15 K to 298.15 K. Journal of Mechanical Science and Technology, 2021, 35, 2247-2258.	0.7	8
9	Optimal design of variable-path heat exchanger for energy efficiency improvement of air-source heat pump system. Applied Energy, 2021, 290, 116741.	5.1	19
10	Two-phase flow distribution in a refrigerant distributor having four indoor-unit connections of a variable refrigerant flow system. International Journal of Refrigeration, 2021, 126, 246-258.	1.8	7
11	Mass flow rate of non-equilibrium subcooled two-phase flow of R600a in a household refrigerator-freezer. International Journal of Refrigeration, 2021, 131, 689-689.	1.8	1
12	A silicon-diamond microchannel heat sink for die-level hotspot thermal management. Applied Thermal Engineering, 2021, 194, 117131.	3.0	23
13	Studies on Tubular MnO ₂ -Core/Carbon Nanofiber-Shell Electrodes for Electrochemical Capacitors. ACS Applied Energy Materials, 2021, 4, 10505-10513.	2.5	3
14	Experimental investigation of pressure drop of air-water two-phase flow through open-cell metal foam. Chemical Engineering Science, 2021, 241, 116701.	1.9	4
15	Effect of part load operating conditions of an air conditioner on the number of refrigerant paths and heat transfer performance of a condenser. Energy Conversion and Management, 2020, 203, 112257.	4.4	15
16	Enhancement of a heat transfer performance on the Al6061 surface using microstructures and fluorine-doped diamond-like carbon (F-DLC) coating. International Journal of Heat and Mass Transfer, 2020, 148, 119108.	2.5	10
17	Experimental and numerical analysis of thermal flow in open-cell porous metal during Darcy-Forchheimer transition regime. Applied Thermal Engineering, 2020, 181, 116029.	3.0	11
18	Analysis of phase transition, structural and dynamical properties of R290 using molecular dynamics simulation. Journal of Mechanical Science and Technology, 2020, 34, 4345-4353.	0.7	6

#	Article	IF	CITATIONS
19	Modeling of air-side heat transfer and pressure drop of straight fin-tube no-frost evaporators for a household refrigerator. Journal of Mechanical Science and Technology, 2020, 34, 4773-4784.	0.7	3
20	A novel composite pinfin heat sink for hotspot mitigation. International Journal of Heat and Mass Transfer, 2020, 156, 119843.	2.5	30
21	RuO ₂ Nanorods on Electrospun Carbon Nanofibers for Supercapacitors. ACS Applied Nano Materials, 2020, 3, 3847-3858.	2.4	104
22	The effects of the parameters of a refrigeration system working with R600a on the non-equilibrium subcooled two-phase flow of the refrigerant. International Journal of Refrigeration, 2020, 118, 462-469.	1.8	4
23	Calculation of the thermodynamic properties of R448A and R449A in a saturation temperature range of 233.15ÅK to 343.15ÅK using molecular dynamics simulations. International Communications in Heat and Mass Transfer, 2020, 116, 104717.	2.9	14
24	Thermodynamic properties and critical parameters of HFO-1123 and its binary blends with HFC-32 and HFC-134a using molecular simulations. International Journal of Refrigeration, 2019, 104, 311-320.	1.8	22
25	Steam condensate behavior and heat transfer performance on chromium-ion-implanted metal surfaces. International Journal of Heat and Mass Transfer, 2019, 136, 681-691.	2.5	14
26	Evaluation of the constituent correlations for predicting the refrigerant flow characteristics in adiabatic helically coiled capillary tubes. Journal of Mechanical Science and Technology, 2019, 33, 2123-2136.	0.7	8
27	Development of a numerical analysis model for a multi-port mini-channel heat exchanger considering a two-phase flow distribution in the header. Part I: Numerical modeling. International Journal of Heat and Mass Transfer, 2019, 138, 1264-1280.	2.5	17
28	Adhesion energy per unit area various liquid droplets on PMMA, Parylene C and PPFC coated flat solid surfaces. Journal of Mechanical Science and Technology, 2019, 33, 1441-1450.	0.7	4
29	Comparative molecular dynamics simulations of homogeneous condensation of refrigerants. International Journal of Thermal Sciences, 2019, 141, 187-198.	2.6	17
30	Flow patterns of vertically upward and downward air-water two-phase flow in a narrow rectangular channel. International Journal of Heat and Mass Transfer, 2019, 128, 934-953.	2.5	34
31	Flow regime identification and classification based on void fraction and differential pressure of vertical two-phase flow in rectangular channel. International Journal of Heat and Mass Transfer, 2019, 132, 802-816.	2.5	32
32	Dropwise condensation induced on chromium ion implanted aluminum surface. Nuclear Engineering and Technology, 2019, 51, 84-94.	1.1	18
33	Replacement of Present Conventional Condenser of Household Refrigerator by Louver Fin Micro-Channel Condenser. Arabian Journal for Science and Engineering, 2019, 44, 753-761.	1.7	9
34	Method to control an air conditioner by directly measuring the relative humidity of indoor air to improve the comfort and energy efficiency. Applied Energy, 2018, 215, 290-299.	5.1	26
35	Molecular dynamics simulations on homogeneous condensation of R600a refrigerant. Journal of Molecular Liquids, 2018, 261, 492-502.	2.3	24
36	Visual observations of flow patterns in downward air-water two-phase flows in a vertical narrow rectangular channel. Annals of Nuclear Energy, 2018, 114, 384-394.	0.9	16

#	Article	IF	CITATIONS
37	A generalized continuous empirical correlation for predicting refrigerant mass flow rates through adiabatic capillary tubes. Applied Thermal Engineering, 2018, 139, 47-60.	3.0	13
38	Effects of a non-equilibrium two-phase refrigerant flow at subcooled temperatures on the performance of an R-600a refrigeration system. International Journal of Refrigeration, 2018, 87, 118-130.	1.8	7
39	Heating performance of a VRF heat pump system incorporating double vapor injection in scroll compressor. International Journal of Refrigeration, 2018, 96, 50-62.	1.8	35
40	A molecular dynamics simulation study on condensation of R600a refrigerant. AIP Conference Proceedings, 2018, , .	0.3	0
41	Condensation mode transition and condensation heat transfer performance variations of nitrogen ion-implanted aluminum surfaces. International Journal of Heat and Mass Transfer, 2018, 125, 983-993.	2.5	9
42	A generalized continuous empirical correlation for the refrigerant mass flow rate through adiabatic straight and helically coiled capillary tubes. Applied Thermal Engineering, 2018, 143, 450-460.	3.0	15
43	Enhanced electrochemical properties of manganese oxide and boron dual-decorated carbon nanofibers with hierarchical micro/mesopores. Synthetic Metals, 2018, 244, 48-53.	2.1	4
44	Development of a numerical analysis model using a flow network for a plate heat exchanger with consideration of the flow distribution. International Journal of Heat and Mass Transfer, 2017, 112, 1-17.	2.5	10
45	Development of a continuous empirical correlation for refrigerant mass flow rate through non-adiabatic capillary tubes. Applied Thermal Engineering, 2017, 127, 547-558.	3.0	16
46	Assessment of Dimensionless Correlations for Prediction of Refrigerant Mass Flow Rate Through Capillary Tubes — A Review. International Journal of Air-Conditioning and Refrigeration, 2017, 25, 1730004.	0.8	8
47	Method for determining the optimum number of circuits for a fin-tube condenser in a heat pump. International Journal of Heat and Mass Transfer, 2016, 98, 462-471.	2.5	28
48	Experimental investigation of the convective heat transfer coefficient for open-cell porous metal fins at low Reynolds numbers. International Journal of Heat and Mass Transfer, 2016, 100, 608-614.	2.5	29
49	Heat transfer performance variations of condensers due to non-uniform air velocity distributions. International Journal of Refrigeration, 2016, 69, 85-95.	1.8	12
50	Evaluation method of iodine re-evolution from an in-containment water pool after a loss of coolant accident, Part I: pH estimation of a solution with various chemicals. Annals of Nuclear Energy, 2016, 87, 324-330.	0.9	2
51	Determination of the adhesion energy of liquid droplets on a hydrophobic flat surface considering the contact area. International Journal of Heat and Mass Transfer, 2016, 102, 826-832.	2.5	20
52	Performance Comparison of Modified Offset Strip Fins Using a CFD Analysis. International Journal of Air-Conditioning and Refrigeration, 2016, 24, 1650015.	0.8	7
53	Non-equilibrium two-phase refrigerant flow at subcooled temperatures in an R600a refrigeration system. International Journal of Refrigeration, 2016, 70, 148-156.	1.8	15
54	Evaluation method of iodine re-evolution from an in-containment water pool after a loss of coolant accident, Part II: Evaluation of pH and iodine re-evolution. Annals of Nuclear Energy, 2016, 88, 83-94.	0.9	0

#	Article	IF	CITATIONS
55	A Review of Prediction Methods for Two-Phase Pressure Loss in Mini/Micro-Channels. International Journal of Air-Conditioning and Refrigeration, 2016, 24, 1630002.	0.8	22
56	Performance of multiple mini-tube heat exchangers as an internal heat exchanger of a vapor-injection cycle heat pump. Heat and Mass Transfer, 2016, 52, 741-752.	1.2	2
57	Numerical analyses of flow distributions in nuclear fuel assemblies affected by grid deformations. Annals of Nuclear Energy, 2015, 78, 188-200.	0.9	2
58	Thermo-fluidic characteristics of open cell metal foam for use as anodes in DCFCs, part II: Triple phase boundary generation of metal foam. International Journal of Hydrogen Energy, 2015, 40, 4241-4251.	3.8	6
59	The variation of hydrophobicity of aluminum alloy by nitrogen and argon ion implantation. Heat and Mass Transfer, 2015, 51, 487-495.	1.2	11
60	Scientific design of a large-scale sodium thermal–hydraulic test facility for KALIMER—Part II: Validation of reactor pool design using CFD analyses. Annals of Nuclear Energy, 2015, 76, 439-450.	0.9	1
61	Dynamic response of a capacity-modulated linear compressor to supply voltage disturbances. International Journal of Refrigeration, 2014, 40, 84-96.	1.8	15
62	An experimental study on the pressure drop and heat transfer through straight and curved small diameter tubes. Journal of Mechanical Science and Technology, 2014, 28, 797-809.	0.7	5
63	Creation of microstructured surfaces using Cu–Ni composite electrodeposition and their application to superhydrophobic surfaces. Applied Surface Science, 2014, 289, 14-20.	3.1	39
64	Experimental study on flooding and flow reversal in small diameter tubes with various inclinations and horizontal lengths. International Journal of Refrigeration, 2014, 38, 290-298.	1.8	4
65	Heat pump control method based on direct measurement of evaporation pressure to improve energy efficiency and indoor air temperature stability at a low cooling load condition. Applied Energy, 2014, 132, 99-107.	5.1	28
66	Thermo-fluidic characteristics of open cell metal foam as an anodes for DCFC, part I: Head loss coefficient of metal foam. International Journal of Hydrogen Energy, 2014, 39, 12369-12376.	3.8	17
67	Heat Transfer Performance Variation of Condenser due to Non-uniform Air Flow. Korean Journal of Air-Conditioning and Refrigeration Engineering, 2014, 26, 193-198.	0.1	2
68	Observation of water condensate on hydrophobic micro textured surfaces. Heat and Mass Transfer, 2013, 49, 955-962.	1.2	15
69	The selection of volume ratio of two-stage rotary compressor and its effects on air-to-water heat pump with flash tank cycle. Applied Energy, 2013, 104, 187-196.	5.1	58
70	Performance characteristics of a capacity-modulated linear compressor for home refrigerators. International Journal of Refrigeration, 2013, 36, 776-785.	1.8	39
71	SUCTION PIPE DESIGN CRITERION FOR R-134a REFRIGERATORS TO SECURE OIL RETURN TO COMPRESSOR. International Journal of Air-Conditioning and Refrigeration, 2012, 20, 1250018.	0.8	4
72	Experimental and numerical evaluation of debris transport augmentation by turbulence during the recirculation-cooling phase of a LOCA. Nuclear Engineering and Design, 2012, 250, 520-537.	0.8	4

#	Article	IF	CITATIONS
73	CFD analysis of fin tube heat exchanger with a pair of delta winglet vortex generators. Journal of Mechanical Science and Technology, 2012, 26, 2949-2958.	0.7	38
74	Numerical simulation of the effects of a suction line heat exchanger on vapor compression refrigeration cycle performance. Journal of Mechanical Science and Technology, 2012, 26, 1213-1226.	0.7	18
75	Development of empirical correlations for non-adiabatic capillary tube based on mechanistic model. International Journal of Refrigeration, 2012, 35, 974-983.	1.8	22
76	Debris transport evaluation during the blow-down phase of a LOCA using computational fluid dynamics. Nuclear Engineering and Design, 2011, 241, 3244-3255.	0.8	4
77	The effects of the evaluation method on the average heat transfer coefficient for a mini-channel tube bundle. International Journal of Heat and Mass Transfer, 2011, 54, 5481-5490.	2.5	7
78	An assessment of models for predicting refrigerant characteristics in adiabatic and non-adiabatic capillary tubes. Heat and Mass Transfer, 2011, 47, 163-180.	1.2	19
79	An experimental and numerical study on an inherent capacity modulated linear compressor for home refrigerators. International Journal of Refrigeration, 2011, 34, 1415-1423.	1.8	44
80	AN EVALUATION OF CONSTITUENT CORRELATIONS FOR PREDICTING REFRIGERANT CHARACTERISTICS IN ADIABATIC CAPILLARY TUBES. International Journal of Air-Conditioning and Refrigeration, 2010, 18, 131-139.	0.8	9
81	The effects of heat transfer evaluation methods on Nusselt number for mini-channel tube bundles. , 2010, , .		1
82	High temperature heat exchanger studies for applications to gas turbines. Heat and Mass Transfer, 2009, 46, 175-186.	1.2	103
83	Counter-current flow limitation velocity measured in annular narrow gaps formed between large diameter concentric pipes. Korean Journal of Chemical Engineering, 2008, 25, 209-216.	1.2	9
84	Coolant flow field in a real geometry of PWR downcomer and lower plenum. Annals of Nuclear Energy, 2008, 35, 610-619.	0.9	24
85	Head Loss Coefficient Evaluation Based on CFD Analysis for PWR Downcomer and Lower Plenum. Heat Transfer Engineering, 2008, 29, 677-684.	1.2	2
86	Numerical Analysis of Experimental Observations for Heat Transfer Augmentation by Ultrasonic Vibration. Heat Transfer Engineering, 2006, 27, 14-22.	1.2	37