List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5433997/publications.pdf Version: 2024-02-01

IEAN CALIFIED

#	Article	IF	CITATIONS
1	Functional mapping of PHF6 complexes in chromatin remodeling, replication dynamics, and DNA repair. Blood, 2022, 139, 3418-3429.	0.6	7
2	The UVSSA complex alleviates MYC-driven transcription stress. Journal of Cell Biology, 2021, 220, .	2.3	6
3	DNA Damage Response in Xenopus laevis Cell-Free Extracts. Methods in Molecular Biology, 2021, 2267, 103-144.	0.4	1
4	Inhibition of DNA replication initiation by silver nanoclusters. Nucleic Acids Research, 2021, 49, 5074-5083.	6.5	12
5	Distinct pathways of homologous recombination controlled by the SWS1–SWSAP1–SPIDR complex. Nature Communications, 2021, 12, 4255.	5.8	30
6	DNA damage–induced phosphorylation of CtIP at a conserved ATM/ATR site T855 promotes lymphomagenesis in mice. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	8
7	CtIP-mediated DNA resection is dispensable for IgH class switch recombination by alternative end-joining. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 25700-25711.	3.3	13
8	Dual-Color Plasmonic Nanosensor for Radiation Dosimetry. ACS Applied Materials & Interfaces, 2020, 12, 22499-22506.	4.0	17
9	Assembling nuclear domains: Lessons from DNA repair. Journal of Cell Biology, 2019, 218, 2444-2455.	2.3	38
10	CtIP is essential for early B cell proliferation and development in mice. Journal of Experimental Medicine, 2019, 216, 1648-1663.	4.2	15
11	Nuclear ARP2/3 drives DNA break clustering for homology-directed repair. Nature, 2018, 559, 61-66.	13.7	304
12	Sensing and Processing of DNA Interstrand Crosslinks by the Mismatch Repair Pathway. Cell Reports, 2017, 21, 1375-1385.	2.9	43
13	BRCA1-CtIP interaction in the repair of DNA double-strand breaks. Molecular and Cellular Oncology, 2016, 3, e1169343.	0.3	9
14	MRN, CtIP, and BRCA1 mediate repair of topoisomerase II–DNA adducts. Journal of Cell Biology, 2016, 212, 399-408.	2.3	116
15	MYC is a critical target of FBXW7. Oncotarget, 2015, 6, 3292-3305.	0.8	39
16	MYC and the Control of DNA Replication. Cold Spring Harbor Perspectives in Medicine, 2014, 4, a014423-a014423.	2.9	58
17	DNA double-strand break repair pathway choice and cancer. DNA Repair, 2014, 19, 169-175.	1.3	266
18	Cdc45 Is a Critical Effector of Myc-Dependent DNA Replication Stress. Cell Reports, 2013, 3, 1629-1639.	2.9	106

#	Article	IF	CITATIONS
19	The differences between ICL repair during and outside of S phase. Trends in Biochemical Sciences, 2013, 38, 386-393.	3.7	48
20	Activation of DSB Processing Requires Phosphorylation of CtIP by ATR. Molecular Cell, 2013, 49, 657-667.	4.5	112
21	The MRN-CtIP Pathway Is Required for Metaphase Chromosome Alignment. Molecular Cell, 2013, 49, 1097-1107.	4.5	17
22	More tasks for Dna2 in S-phase. Cell Cycle, 2012, 11, 4299-4299.	1.3	2
23	Replication-Independent Repair of DNA Interstrand Crosslinks. Molecular Cell, 2012, 47, 140-147.	4.5	62
24	Double-Strand Break End Resection and Repair Pathway Choice. Annual Review of Genetics, 2011, 45, 247-271.	3.2	1,264
25	Cdk1 uncouples CtIP-dependent resection and Rad51 filament formation during M-phase double-strand break repair. Journal of Cell Biology, 2011, 194, 705-720.	2.3	67
26	A human B ell interactome identifies MYB and FOXM1 as master regulators of proliferation in germinal centers. Molecular Systems Biology, 2010, 6, 377.	3.2	336
27	Origin-dependent initiation of DNA replication within telomeric sequences. Nucleic Acids Research, 2010, 38, 467-476.	6.5	16
28	The Fanconi anemia pathway and ICL repair: implications for cancer therapy. Critical Reviews in Biochemistry and Molecular Biology, 2010, 45, 424-439.	2.3	40
29	PIKK-dependent phosphorylation of Mre11 induces MRN complex inactivation by disassembly from chromatin. DNA Repair, 2009, 8, 1311-1320.	1.3	42
30	MRE11–RAD50–NBS1 is a critical regulator of FANCD2 stability and function during DNA double-strand break repair. EMBO Journal, 2009, 28, 2400-2413.	3.5	56
31	Reply to 'Corrected structure of mirin, a small-molecule inhibitor of the Mre11–Rad50–Nbs1 complex'. Nature Chemical Biology, 2009, 5, 130-130.	3.9	3
32	Role of Mre11 in chromosomal nonhomologous end joining in mammalian cells. Nature Structural and Molecular Biology, 2009, 16, 819-824.	3.6	273
33	Checkpoint Signaling from a Single DNA Interstrand Crosslink. Molecular Cell, 2009, 35, 704-715.	4.5	94
34	Single-stranded DNA-binding protein hSSB1 is critical for genomic stability. Nature, 2008, 453, 677-681.	13.7	220
35	A forward chemical genetic screen reveals an inhibitor of the Mre11–Rad50–Nbs1 complex. Nature Chemical Biology, 2008, 4, 119-125.	3.9	340
36	Fanconi anemia proteins stabilize replication forks. DNA Repair, 2008, 7, 1973-1981.	1.3	59

#	Article	IF	CITATIONS
37	Rad50 Adenylate Kinase Activity Regulates DNA Tethering by Mre11/Rad50 Complexes. Molecular Cell, 2007, 25, 647-661.	4.5	94
38	Non-transcriptional control of DNA replication by c-Myc. Nature, 2007, 448, 445-451.	13.7	578
39	The DNA damage response during an unperturbed S-phase. DNA Repair, 2007, 6, 914-922.	1.3	25
40	Two-step activation of ATM by DNA and the Mre11–Rad50–Nbs1 complex. Nature Structural and Molecular Biology, 2006, 13, 451-457.	3.6	201
41	Fanconi Anemia Proteins Are Required To Prevent Accumulation of Replication-Associated DNA Double-Strand Breaks. Molecular and Cellular Biology, 2006, 26, 425-437.	1.1	103
42	The ATPase activity of MCM2–7 is dispensable for pre-RC assembly but is required for DNA unwinding. EMBO Journal, 2005, 24, 4334-4344.	3.5	42
43	Regulation of the G2/M Transition in Xenopus Oocytes by the cAMP-dependent Protein Kinase. Journal of Biological Chemistry, 2005, 280, 24339-24346.	1.6	36
44	Studies of the properties of human origin recognition complex and its Walker A motif mutants. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 69-74.	3.3	52
45	Repair of double-strand breaks by nonhomologous end joining in the absence of Mre11. Journal of Cell Biology, 2005, 171, 765-771.	2.3	60
46	ATM and ATR Check in on Origins: A Dynamic Model for Origin Selection and Activation. Cell Cycle, 2005, 4, 238-240.	1.3	38
47	From oogenesis through gastrulation: developmental regulation of apoptosis. Seminars in Cell and Developmental Biology, 2005, 16, 215-224.	2.3	45
48	XNGNR1-dependent neurogenesis mediates early neural cell death. Mechanisms of Development, 2005, 122, 635-644.	1.7	7
49	Xenopus Cell-Free Extracts to Study DNA Damage Checkpoints. , 2004, 241, 255-268.		18
50	Mre11 Assembles Linear DNA Fragments into DNA Damage Signaling Complexes. PLoS Biology, 2004, 2, e110.	2.6	91
51	<i>Xenopus</i> Cell-Free Extracts to Study the DNA Damage Response. , 2004, 280, 213-228.		21
52	MCM proteins and checkpoint kinases get together at the fork. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 10845-10846.	3.3	33
53	DNA Unwinding Is an MCM Complex-dependent and ATP Hydrolysis-dependent Process. Journal of Biological Chemistry, 2004, 279, 45586-45593.	1.6	44
54	The WNT Signalling Modulator, Wise, is Expressed in an Interaction-Dependent Manner During Hair-Follicle Cycling. Journal of Investigative Dermatology, 2004, 123, 613-621.	0.3	32

#	Article	IF	CITATIONS
55	ATR and ATM regulate the timing of DNA replication origin firing. Nature Cell Biology, 2004, 6, 648-655.	4.6	333
56	Regulation of DNA replication by ATR: signaling in response to DNA intermediates. DNA Repair, 2004, 3, 901-908.	1.3	170
57	Early neural cell death: dying to become neurons. Developmental Biology, 2004, 274, 233-244.	0.9	139
58	Coordinated Chromatin-Association of Fanconi Anemia Network Proteins Requires Replication-Coupled DNA Damage Recognition Blood, 2004, 104, 723-723.	0.6	0
59	A role for programmed cell death during early neurogenesis in xenopus. Developmental Biology, 2003, 260, 31-45.	0.9	42
60	An ATR- and Cdc7-Dependent DNA Damage Checkpoint that Inhibits Initiation of DNA Replication. Molecular Cell, 2003, 11, 203-213.	4.5	331
61	Single-Strand DNA Gaps Trigger an ATR- and Cdc7-Dependent Checkpoint. Cell Cycle, 2003, 2, 17-17.	1.3	31
62	Stage-specific Alterations of Cyclin Expression During UVB-induced Murine Skin Tumor Development¶. Photochemistry and Photobiology, 2002, 75, 58.	1.3	22
63	Reduced cyclin D1 ubiquitination in UVB-induced murine squamous cell carcinomas. Biochemical and Biophysical Research Communications, 2002, 298, 377-382.	1.0	8
64	Ultraviolet-B-Induced G1 Arrest is Mediated by Downregulation of Cyclin-Dependent Kinase 4 in Transformed Keratinocytes Lacking Functional p53. Journal of Investigative Dermatology, 2002, 118, 818-824.	0.3	17
65	Stage-specific Alterations of Cyclin Expression During UVB-induced Murine Skin Tumor Development¶. Photochemistry and Photobiology, 2002, 75, 58-67.	1.3	1
66	Mre11 Protein Complex Prevents Double-Strand Break Accumulation during Chromosomal DNA Replication. Molecular Cell, 2001, 8, 137-147.	4.5	224
67	Role for cyclin-dependent kinase 2 in mitosis exit. Current Biology, 2001, 11, 1221-1226.	1.8	38
68	The Intrinsic DNA Helicase Activity of Methanobacterium thermoautotrophicum ΔH Minichromosome Maintenance Protein. Journal of Biological Chemistry, 2000, 275, 15049-15059.	1.6	133
69	Interaction of Xenopus Cdc2·Cyclin A1 with the Origin Recognition Complex. Journal of Biological Chemistry, 2000, 275, 4239-4243.	1.6	34
70	Mechanism of Ultraviolet B-Induced Cell Cycle Arrest in G2/M Phase in Immortalized Skin Keratinocytes with Defective p53. Biochemical and Biophysical Research Communications, 2000, 277, 107-111.	1.0	38
71	Reconstitution of an ATM-Dependent Checkpoint that Inhibits Chromosomal DNA Replication following DNA Damage. Molecular Cell, 2000, 6, 649-659.	4.5	164
72	Developmental Regulation of Induced and Programmed Cell Death in <i>Xenopus</i> Embryos. Annals of the New York Academy of Sciences, 1999, 887, 105-119.	1.8	21

#	Article	IF	CITATIONS
73	Isolation and characterization of Xenopus ATM (X-ATM): expression, localization, and complex formation during oogenesis and early development. Oncogene, 1999, 18, 7070-7079.	2.6	28
74	Protein Kinase A is required for chromosomal DNA replication. Current Biology, 1999, 9, 903-S2.	1.8	25
75	Developmental regulation of MCM replication factors in Xenopus laevis. Current Biology, 1998, 8, 347-350.	1.8	26
76	Programmed Cell Death duringXenopusDevelopment: A Spatio-temporal Analysis. Developmental Biology, 1998, 203, 36-48.	0.9	226
77	A developmental timer that regulates apoptosis at the onset of gastrulation. Mechanisms of Development, 1997, 69, 183-195.	1.7	169
78	Molecular biology of the cell. Trends in Biochemical Sciences, 1993, 18, 147-148.	3.7	0
79	cdc25 is a specific tyrosine phosphatase that directly activates p34cdc2. Cell, 1991, 67, 197-211.	13.5	863
80	Cyclin is a component of maturation-promoting factor from Xenopus. Cell, 1990, 60, 487-494.	13.5	684
81	The cyclin B2 component of MPF is a substrate for the c-mosxe proto-oncogene product. Cell, 1990, 61, 825-831.	13.5	121
82	Dephosphorylation and activation of Xenopusp34cdc2 protein kinase during the cell cycle. Nature, 1989, 339, 626-629.	13.7	329
83	Purified maturation-promoting factor contains the product of a Xenopus homolog of the fission yeast cell cycle control gene cdc2+. Cell, 1988, 54, 433-439.	13.5	911
84	The role of the germinal vesicle for the appearance of maturation-promoting factor activity in the axolotl oocyte. Developmental Biology, 1987, 123, 483-486.	0.9	20
85	Involvement of the cytoskeleton in early grey crescent formation in axolotl oocytes. Roux's Archives of Developmental Biology, 1987, 196, 316-320.	1.2	0
86	A three-step scheme for gray crescent formation in the rotated axolotl oocyte. Developmental Biology, 1985, 110, 192-199.	0.9	11
87	Inhibition of protein synthesis elicits early grey crescent formation in the axolotl oocyte. Wilhelm Roux's Archives of Developmental Biology, 1983, 192, 196-199.	1.4	4