
Hanna KwaÅ>na

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/543361/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effects of sharp eyespot (Rhizoctonia cerealis) on yield and grain quality of winter wheat. European Journal of Plant Pathology, 2013, 135, 187-200.	1.7	63
2	lsolation, identification, and ecology of growth and taxol production by an endophytic strain of Paraconiothyrium variabile from English yew trees (Taxus baccata). Fungal Biology, 2015, 119, 1022-1031.	2.5	41
3	Microbiota in Wheat Roots, Rhizosphere and Soil in Crops Grown in Organic and Other Production Systems. Journal of Phytopathology, 2015, 163, 245-263.	1.0	41
4	Determining species diversity of microfungal communities in forest tree roots by pure-culture isolation and DNA sequencing. Applied Soil Ecology, 2008, 40, 44-56.	4.3	32
5	Dynamics of the root/soil pathogens and antagonists in organic and integrated production of potato. European Journal of Plant Pathology, 2011, 131, 603-620.	1.7	16
6	Mycobiota Associated with the Vascular Wilt of Poplar. Plants, 2021, 10, 892.	3.5	14
7	Fungi associated with <i>Cyclaneusma</i> needle cast in Scots pine in the west of Poland. Forest Pathology, 2019, 49, e12487.	1.1	13
8	Mycobionta of birch and birch stump roots and its possible effect on the infection by Armillaria spp. I Acta Mycologica, 2014, 31, 101-110.	0.3	12
9	Effects of preparation of clearâ€cut forest sites on the soil mycobiota with consequences for Scots pine growth and health. Forest Pathology, 2019, 49, e12494.	1.1	11
10	Fungal communities in barren forest soil after amendment with different wood substrates and their possible effects on trees', pathogens, insects and nematodes. Journal of Plant Protection Research, 2015, 55, 301-311.	1.0	10
11	Effect of management on fungal communities in dead wood of Scots pine. Forest Ecology and Management, 2021, 479, 118528.	3.2	10
12	Microbiota in Wheat Roots Evaluated by Cloning of ITS1/2 rDNA and Sequencing. Journal of Phytopathology, 2010, 158, 278-287.	1.0	9
13	Microbial Communities in Potato Roots and Soil in Organic and Integrated Production Systems Compared by the Plate Culturing Method. Journal of Phytopathology, 2012, 160, 337-345.	1.0	8
14	Communities of Fungi in Black Cherry Stumps and Effects of Herbicide. Plants, 2020, 9, 1126.	3.5	7
15	Fungi inhabiting knotwood of <i>Pinus sylvestris</i> infected by <i>Porodaedalea pini</i> . Journal of Phytopathology, 2017, 165, 500-507.	1.0	6
16	Effect of Fungi on the Destruction of Historical Parchment and Paper Documents. Polish Journal of Environmental Studies, 2020, 29, 2679-2695.	1.2	6
17	Effects of silvicultural techniques on the diversity of microorganisms in forest soil and their possible participation in biological control of Armillaria and Heterobasidion. Journal of Plant Protection Research, 2015, 55, 241-253.	1.0	5
18	Fungi in Public Heritage Buildings in Poland. Polish Journal of Environmental Studies, 2020, 29, 3651-3662.	1.2	5

Hanna KwaÅ>na

#	Article	IF	CITATIONS
19	Effect of Scots Pine Sawdust Amendment on Abundance and Diversity of Culturable Fungi in Soil. Polish Journal of Environmental Studies, 2015, 24, 2515-2524.	1.2	5
20	Fungal communities in soil beneath Scots pine and their stumps. Effect of fungi on Heterobasidion annosum and Armillaria ostoyae growth. Acta Mycologica, 2014, 30, 193-205.	0.3	5
21	Stimulation of Armillaria rhizomorph growth by oak root fungi. Acta Mycologica, 2014, 36, 257-272.	0.3	5
22	Culturable microfungi inhibitory to A <i>rmillaria</i> rhizomorph formation from <i>Fagus sylvatica</i> stump roots and soil. Journal of Phytopathology, 2018, 166, 314-323.	1.0	4
23	Bacteria associated with vascular wilt of poplar. Archives of Microbiology, 2021, 203, 4829-4838.	2.2	4
24	Mycobionta of birch and birch stump roots and its possible effect on the infection by Armillaria spp. II Acta Mycologica, 2014, 31, 111-122.	0.3	4
25	The Structure of Saproxylic Beetle Assemblages in View of Coarse Woody Debris Resources in Pine Stands of Western Poland. Forests, 2021, 12, 1558.	2.1	4
26	Occurrence of Erysiphe alphitoides in oak stands affected by flood disaster. Forest Research Papers, 2015, 76, 73-77.	0.2	3
27	Phylogenetic relationships among Porodaedalea pini from Poland and related Porodaedalea species. Open Life Sciences, 2014, 9, 614-627.	1.4	2
28	Fungal pathogens and antagonists in root-soil zone in organic and integrated systems of potato production. Journal of Plant Protection Research, 2016, 56, 167-177.	1.0	2