
Atsushi Suzuki

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5433494/publications.pdf Version: 2024-02-01

Δτομομι Ομγικι

#	Article	IF	CITATIONS
1	Delineation of biliary epithelial cell dynamics in maternal liver during pregnancy. Genes To Cells, 2022, 27, 192-201.	1.2	1
2	High Protein Diet Feeding Aggravates Hyperaminoacidemia in Mice Deficient in Proglucagon-Derived Peptides. Nutrients, 2022, 14, 975.	4.1	5
3	Direct Conversion of Human Endothelial Cells Into Liver Cancerâ€Forming Cells Using Nonintegrative Episomal Vectors. Hepatology Communications, 2022, 6, 1725-1740.	4.3	2
4	Evaluation of the Efficacy and Effects of Common Hepatic Artery Reconstruction in Pancreas Transplantation: A Randomized Controlled Trial. Journal of Clinical Medicine, 2022, 11, 2258.	2.4	2
5	Meiosis-specific ZFP541 repressor complex promotes developmental progression of meiotic prophase towards completion during mouse spermatogenesis. Nature Communications, 2021, 12, 3184.	12.8	17
6	Direct reprogramming of human umbilical vein- and peripheral blood-derived endothelial cells into hepatic progenitor cells. Nature Communications, 2020, 11, 5292.	12.8	16
7	The Dynamics of Transcriptional Activation by Hepatic Reprogramming Factors. Molecular Cell, 2020, 79, 660-676.e8.	9.7	42
8	Induction of Steatohepatitis and Liver Tumorigenesis by Enforced Snail Expression in Hepatocytes. American Journal of Pathology, 2020, 190, 1271-1283.	3.8	2
9	Direct cell-fate conversion of somatic cells: Toward regenerative medicine and industries. Proceedings of the Japan Academy Series B: Physical and Biological Sciences, 2020, 96, 131-158.	3.8	22
10	Direct Lineage Reprogramming of Mouse Fibroblasts to Acquire the Identity of Fetal Intestine-Derived Progenitor Cells. Methods in Molecular Biology, 2020, 2171, 231-236.	0.9	0
11	Generation of <i>Nanog</i> reporter mice that distinguish pluripotent stem cells from unipotent primordial germ cells. Genesis, 2019, 57, e23334.	1.6	2
12	New High-Throughput Screening Identifies Compounds That Reduce Viability Specifically in Liver Cancer Cells That Express High Levels of SALL4 by Inhibiting Oxidative Phosphorylation. Gastroenterology, 2019, 157, 1615-1629.e17.	1.3	42
13	Zfp281 Shapes the Transcriptome of Trophoblast Stem Cells and Is Essential for Placental Development. Cell Reports, 2019, 27, 1742-1754.e6.	6.4	34
14	Short-Term High-Starch, Low-Protein Diet Induces Reversible Increase in Î ² -cell Mass Independent of Body Weight Gain in Mice. Nutrients, 2019, 11, 1045.	4.1	5
15	Glucagon-Like Peptide-1 Receptor Agonist Protects Dorsal Root Ganglion Neurons against Oxidative Insult. Journal of Diabetes Research, 2019, 2019, 1-10.	2.3	19
16	Cover Image, Volume 57, Issue 11â€12. Genesis, 2019, 57, e23349.	1.6	0
17	Cell Aggregation Culture Induces Functional Differentiation of Induced Hepatocyte-like Cells through Activation of Hippo Signaling. Cell Reports, 2018, 25, 183-198.	6.4	31
18	Prolonged inhibition of hepatocellular carcinoma cell proliferation by combinatorial expression of defined transcription factors. Cancer Science, 2018, 109, 3543-3553.	3.9	33

Атѕиѕні Suzuki

#	Article	IF	CITATIONS
19	Brief summary of the current protocols for generating intestinal organoids. Development Growth and Differentiation, 2018, 60, 387-392.	1.5	11
20	Cell fate modification toward the hepatic lineage by extrinsic factors. Journal of Biochemistry, 2017, 162, 11-16.	1.7	1
21	Chd2 regulates chromatin for proper gene expression toward differentiation in mouse embryonic stem cells. Nucleic Acids Research, 2017, 45, 8758-8772.	14.5	31
22	Generation of Mouse and Human Organoid-Forming Intestinal Progenitor Cells by Direct Lineage Reprogramming. Cell Stem Cell, 2017, 21, 456-471.e5.	11.1	70
23	Novel methods for the treatment of liver fibrosis using in vivo direct reprogramming technology. Stem Cell Investigation, 2016, 3, 92-92.	3.0	1
24	Suppression of lethalâ€7b and miRâ€125a/b Maturation by Lin28b Enables Maintenance of Stem Cell Properties in Hepatoblasts. Hepatology, 2016, 64, 245-260.	7.3	34
25	Myofibroblasts Derived from Hepatic Progenitor Cells Create the Tumor Microenvironment. Stem Cell Reports, 2016, 7, 1130-1139.	4.8	10
26	Kupffer cells induce Notch-mediated hepatocyte conversion in a common mouse model of intrahepatic cholangiocarcinoma. Scientific Reports, 2016, 6, 34691.	3.3	24
27	MBSJ MCC Young Scientist Award 2012 Liver regeneration: a unique and flexible reaction depending on the type of injury. Genes To Cells, 2015, 20, 77-84.	1.2	5
28	Evidence of cell-fate conversion from hepatocytes to cholangiocytes in the injured liver. Current Opinion in Gastroenterology, 2015, 31, 247-251.	2.3	11
29	Dynamic threeâ€dimensional morphogenesis of intrahepatic bile ducts in mouse liver development. Hepatology, 2015, 61, 1003-1011.	7.3	44
30	Cell-Based Regenerative Therapy for Liver Disease. , 2015, , 327-339.		0
31	Acquisition of lipid metabolic capability in hepatocyte-like cells directly induced from mouse fibroblasts. Frontiers in Cell and Developmental Biology, 2014, 2, 43.	3.7	5
32	Hepatocytes, Rather than Cholangiocytes, Can Be the Major Source of Primitive Ductules in the Chronically Injured Mouse Liver. American Journal of Pathology, 2014, 184, 1468-1478.	3.8	106
33	Rapid cell-fate conversion of mouse fibroblasts into hepatocyte-like cells. Inflammation and Regeneration, 2014, 34, 211-216.	3.7	0
34	Artificial induction and disease-related conversion of the hepatic fate. Current Opinion in Genetics and Development, 2013, 23, 579-584.	3.3	7
35	Regulation of organogenesis and stem cell properties by T-box transcription factors. Cellular and Molecular Life Sciences, 2013, 70, 3929-3945.	5.4	28
36	Transcription factors interfering with dedifferentiation induce cell type-specific transcriptional profiles. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 6412-6417.	7.1	37

Атѕиѕні Suzuki

#	Article	IF	CITATIONS
37	Intrahepatic cholangiocarcinoma can arise from Notch-mediated conversion of hepatocytes. Journal of Clinical Investigation, 2012, 122, 3914-3918.	8.2	273
38	Direct conversion of mouse fibroblasts to hepatocyte-like cells by defined factors. Nature, 2011, 475, 390-393.	27.8	755
39	Glycogen synthase kinase 3β-dependent Snail degradation directs hepatocyte proliferation in normal liver regeneration. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 11175-11180.	7.1	35
40	Fbxw7 regulates lipid metabolism and cell fate decisions in the mouse liver. Journal of Clinical Investigation, 2011, 121, 342-354.	8.2	107
41	EGF signaling activates proliferation and blocks apoptosis of mouse and human intestinal stem/progenitor cells in long-term monolayer cell culture. Laboratory Investigation, 2010, 90, 1425-1436.	3.7	56
42	Maintenance of Embryonic Stem Cell Pluripotency by Nanog-Mediated Dedifferentiation of Committed Mesoderm Progenitors. , 2009, , 37-53.		0
43	Flow cytometric isolation and clonal identification of self-renewing bipotent hepatic progenitor cells in adult mouse liver. Hepatology, 2008, 48, 1964-1978.	7.3	147
44	Tbx3 controls the fate of hepatic progenitor cells in liver development by suppressing <i>p19ARF</i> expression. Development (Cambridge), 2008, 135, 1589-1595.	2.5	122
45	Isolation of Mouse Pancreatic Ductal Progenitor Cells Expressing CD133 and c-Met by Flow Cytometric Cell Sorting. Gastroenterology, 2007, 132, 720-732.	1.3	126
46	Maintenance of embryonic stem cell pluripotency by Nanog-mediated reversal of mesoderm specification. Nature Clinical Practice Cardiovascular Medicine, 2006, 3, S114-S122.	3.3	58
47	Nanog binds to Smad1 and blocks bone morphogenetic protein-induced differentiation of embryonic stem cells. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 10294-10299.	7.1	226
48	Prospective Isolation of Multipotent Pancreatic Progenitors Using Flow-Cytometric Cell Sorting. Diabetes, 2004, 53, 2143-2152.	0.6	216
49	Liver repopulation by c-Met-positive stem/progenitor cells isolated from the developing rat liver. Hepato-Gastroenterology, 2004, 51, 423-6.	0.5	10
50	Role for growth factors and extracellular matrix in controlling differentiation of prospectively isolated hepatic stem cells. Development (Cambridge), 2003, 130, 2513-2524.	2.5	152
51	Glucagon-like peptide 1 (1–37) converts intestinal epithelial cells into insulin-producing cells. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 5034-5039.	7.1	133
52	In Vitro Production of Functionally Mature Hepatocytes from Prospectively Isolated Hepatic Stem Cells. Cell Transplantation, 2003, 12, 469-473.	2.5	28
53	Evidence for Hepatocyte Differentiation from Embryonic Stem Cells In Vitro. Cell Transplantation, 2002, 11, 429-434.	2.5	69
54	Clonal identification and characterization of self-renewing pluripotent stem cells in the developing liver. Journal of Cell Biology, 2002, 156, 173-184.	5.2	343

Атѕиѕні Suzuki

#	Article	IF	CITATIONS
55	Identification and propagation of liver stem cells. Seminars in Cell and Developmental Biology, 2002, 13, 455-461.	5.0	23
56	Establishment of Clonal Colony-Forming Assay System for Pancreatic Stem/Progenitor Cells. Cell Transplantation, 2002, 11, 451-453.	2.5	24
57	Establishment of clonal colony-forming assay system for pancreatic stem/progenitor cells. Cell Transplantation, 2002, 11, 451-3.	2.5	10
58	Clonal Expansion of Hepatic Stem/Progenitor Cells following Flow Cytometric Cell Sorting. Cell Transplantation, 2001, 10, 393-396.	2.5	9
59	Clonogenic Colony-Forming Ability of Flow Cytometrically Isolated Hepatic Progenitor Cells in the Murine Fetal Liver. Cell Transplantation, 2000, 9, 697-700.	2.5	16
60	Flow-cytometric separation and enrichment of hepatic progenitor cells in the developing mouse liver. Hepatology, 2000, 32, 1230-1239.	7.3	267