
George Daley

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5433029/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Reprogramming of human somatic cells to pluripotency with defined factors. Nature, 2008, 451, 141-146.	27.8	2,670
2	Highly Efficient Reprogramming to Pluripotency and Directed Differentiation of Human Cells with Synthetic Modified mRNA. Cell Stem Cell, 2010, 7, 618-630.	11.1	2,368
3	Induction of Chronic Myelogenous Leukemia in Mice by the P210 ^{<i>bcr/abl</i>} Gene of the Philadelphia Chromosome. Science, 1990, 247, 824-830.	12.6	2,105
4	Disease-Specific Induced Pluripotent Stem Cells. Cell, 2008, 134, 877-886.	28.9	2,071
5	Epigenetic memory in induced pluripotent stem cells. Nature, 2010, 467, 285-290.	27.8	2,011
6	Characterization of AMN107, a selective inhibitor of native and mutant Bcr-Abl. Cancer Cell, 2005, 7, 129-141.	16.8	1,387
7	Selective Blockade of MicroRNA Processing by Lin28. Science, 2008, 320, 97-100.	12.6	1,316
8	Somatic coding mutations in human induced pluripotent stem cells. Nature, 2011, 471, 63-67.	27.8	1,147
9	Prostaglandin E2 regulates vertebrate haematopoietic stem cell homeostasis. Nature, 2007, 447, 1007-1011.	27.8	1,037
10	The promise of induced pluripotent stem cells in research and therapy. Nature, 2012, 481, 295-305.	27.8	976
11	Large intergenic non-coding RNA-RoR modulates reprogramming of human induced pluripotent stem cells. Nature Genetics, 2010, 42, 1113-1117.	21.4	902
12	The Lin28/let-7 Axis Regulates Glucose Metabolism. Cell, 2011, 147, 81-94.	28.9	812
13	Derivation of embryonic germ cells and male gametes from embryonic stem cells. Nature, 2004, 427, 148-154.	27.8	810
14	Lin28 promotes transformation and is associated with advanced human malignancies. Nature Genetics, 2009, 41, 843-848.	21.4	742
15	HoxB4 Confers Definitive Lymphoid-Myeloid Engraftment Potential on Embryonic Stem Cell and Yolk Sac Hematopoietic Progenitors. Cell, 2002, 109, 29-37.	28.9	726
16	Mechanisms of Autoinhibition and STI-571/Imatinib Resistance Revealed by Mutagenesis of BCR-ABL. Cell, 2003, 112, 831-843.	28.9	588
17	Chromatin-modifying enzymes as modulators of reprogramming. Nature, 2012, 483, 598-602.	27.8	583
18	Correction of a Genetic Defect by Nuclear Transplantation and Combined Cell and Gene Therapy. Cell, 2002, 109, 17-27.	28.9	572

#	Article	IF	CITATIONS
19	Generation of induced pluripotent stem cells from human blood. Blood, 2009, 113, 5476-5479.	1.4	559
20	Influence of Threonine Metabolism on <i>S</i> -Adenosylmethionine and Histone Methylation. Science, 2013, 339, 222-226.	12.6	555
21	The Toughest Triage — Allocating Ventilators in a Pandemic. New England Journal of Medicine, 2020, 382, 1973-1975.	27.0	548
22	Donor cell type can influence the epigenome and differentiation potential of human induced pluripotent stem cells. Nature Biotechnology, 2011, 29, 1117-1119.	17.5	547
23	A prudent path forward for genomic engineering and germline gene modification. Science, 2015, 348, 36-38.	12.6	541
24	Gene Targeting of a Disease-Related Gene in Human Induced Pluripotent Stem and Embryonic Stem Cells. Cell Stem Cell, 2009, 5, 97-110.	11.1	505
25	CellNet: Network Biology Applied to Stem Cell Engineering. Cell, 2014, 158, 903-915.	28.9	490
26	Stem cell metabolism in tissue development and aging. Development (Cambridge), 2013, 140, 2535-2547.	2.5	477
27	Biomechanical forces promote embryonic haematopoiesis. Nature, 2009, 459, 1131-1135.	27.8	455
28	Live cell imaging distinguishes bona fide human iPS cells from partially reprogrammed cells. Nature Biotechnology, 2009, 27, 1033-1037.	17.5	445
29	LIF/STAT3 Signaling Fails to Maintain Self-Renewal of Human Embryonic Stem Cells. Stem Cells, 2004, 22, 770-778.	3.2	427
30	A comparison of non-integrating reprogramming methods. Nature Biotechnology, 2015, 33, 58-63.	17.5	424
31	Lin28: Primal Regulator of Growth and Metabolism in Stem Cells. Cell Stem Cell, 2013, 12, 395-406.	11.1	415
32	Induced pluripotent stem cells in disease modelling and drug discovery. Nature Reviews Genetics, 2019, 20, 377-388.	16.3	411
33	Metabolic Regulation in Pluripotent Stem Cells during Reprogramming and Self-Renewal. Cell Stem Cell, 2012, 11, 589-595.	11.1	397
34	Haematopoietic stem and progenitor cells from human pluripotent stem cells. Nature, 2017, 545, 432-438.	27.8	395
35	Lin28: A MicroRNA Regulator with a Macro Role. Cell, 2010, 140, 445-449.	28.9	372
36	Activation of tyrosine kinases by mutation of the gatekeeper threonine. Nature Structural and Molecular Biology, 2008, 15, 1109-1118.	8.2	366

#	Article	IF	CITATIONS
37	A role for Lin28 in primordial germ-cell development and germ-cell malignancy. Nature, 2009, 460, 909-913.	27.8	354
38	Generation of human-induced pluripotent stem cells. Nature Protocols, 2008, 3, 1180-1186.	12.0	348
39	Deconstructing transcriptional heterogeneity in pluripotent stem cells. Nature, 2014, 516, 56-61.	27.8	343
40	Hallmarks of pluripotency. Nature, 2015, 525, 469-478.	27.8	338
41	Lin28 Enhances Tissue Repair by Reprogramming Cellular Metabolism. Cell, 2013, 155, 778-792.	28.9	322
42	Functional Evidence that the Self-Renewal Gene <i>NANOG</i> Regulates Human Tumor Development. Stem Cells, 2009, 27, 993-1005.	3.2	307
43	Telomere elongation in induced pluripotent stem cells from dyskeratosis congenita patients. Nature, 2010, 464, 292-296.	27.8	302
44	Determinants of MicroRNA Processing Inhibition by the Developmentally Regulated RNA-binding Protein Lin28. Journal of Biological Chemistry, 2008, 283, 21310-21314.	3.4	301
45	Reprogramming of T Cells from Human Peripheral Blood. Cell Stem Cell, 2010, 7, 15-19.	11.1	288
46	Impaired intrinsic immunity to HSV-1 in human iPSC-derived TLR3-deficient CNS cells. Nature, 2012, 491, 769-773.	27.8	288
47	Origins and implications of pluripotent stem cell variability and heterogeneity. Nature Reviews Molecular Cell Biology, 2013, 14, 357-368.	37.0	283
48	Lin28a transgenic mice manifest size and puberty phenotypes identified in human genetic association studies. Nature Genetics, 2010, 42, 626-630.	21.4	282
49	Prospects for Stem Cell-Based Therapy. Cell, 2008, 132, 544-548.	28.9	278
50	LIN28 Regulates Stem Cell Metabolism and Conversion to Primed Pluripotency. Cell Stem Cell, 2016, 19, 66-80.	11.1	278
51	High-Efficiency RNA Interference in Human Embryonic Stem Cells. Stem Cells, 2005, 23, 299-305.	3.2	253
52	Use of differentiated pluripotent stem cells in replacement therapy for treating disease. Science, 2014, 345, 1247391.	12.6	243
53	Induction of Multipotential Hematopoietic Progenitors from Human Pluripotent Stem Cells via Respecification of Lineage-Restricted Precursors. Cell Stem Cell, 2013, 13, 459-470.	11.1	241
54	Dissecting Engineered Cell Types and Enhancing Cell Fate Conversion via CellNet. Cell, 2014, 158, 889-902.	28.9	238

#	Article	IF	CITATIONS
55	cdx4 mutants fail to specify blood progenitors and can be rescued by multiple hox genes. Nature, 2003, 425, 300-306.	27.8	227
56	The Promise and Perils of Stem Cell Therapeutics. Cell Stem Cell, 2012, 10, 740-749.	11.1	223
57	New ISSCR Guidelines Underscore Major Principles for Responsible Translational Stem Cell Research. Cell Stem Cell, 2008, 3, 607-609.	11.1	218
58	Histocompatible Embryonic Stem Cells by Parthenogenesis. Science, 2007, 315, 482-486.	12.6	217
59	Integrative Analyses of Human Reprogramming Reveal Dynamic Nature of Induced Pluripotency. Cell, 2015, 162, 412-424.	28.9	206
60	Therapeutic potential of embryonic stem cells. Blood Reviews, 2005, 19, 321-331.	5.7	200
61	Embryonic stem cell-derived hematopoietic stem cells. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 19081-19086.	7.1	193
62	BMP and Wnt Specify Hematopoietic Fate by Activation of the Cdx-Hox Pathway. Cell Stem Cell, 2008, 2, 72-82.	11.1	192
63	Lin28b Is Sufficient to Drive Liver Cancer and Necessary for Its Maintenance in Murine Models. Cancer Cell, 2014, 26, 248-261.	16.8	176
64	Setting Global Standards for Stem Cell Research and Clinical Translation: TheÂ2016 ISSCR Guidelines. Stem Cell Reports, 2016, 6, 787-797.	4.8	172
65	Mechanisms and implications of imatinib resistance mutations in BCR-ABL. Current Opinion in Hematology, 2004, 11, 35-43.	2.5	170
66	Systematic Identification of Factors for Provirus Silencing in Embryonic Stem Cells. Cell, 2015, 163, 230-245.	28.9	162
67	Multiple mechanisms disrupt the let-7 microRNA family in neuroblastoma. Nature, 2016, 535, 246-251.	27.8	159
68	The Transcriptional Landscape of Hematopoietic Stem Cell Ontogeny. Cell Stem Cell, 2012, 11, 701-714.	11.1	155
69	Stem Cells in the Treatment of Disease. New England Journal of Medicine, 2019, 380, 1748-1760.	27.0	152
70	Lin28 sustains early renal progenitors and induces Wilms tumor. Genes and Development, 2014, 28, 971-982.	5.9	149
71	Teratoma Formation Assays with Human Embryonic Stem Cells: A Rationale for One Type of Human-Animal Chimera. Cell Stem Cell, 2007, 1, 253-258.	11.1	140
72	Recombination Signatures Distinguish Embryonic Stem Cells Derived by Parthenogenesis and Somatic Cell Nuclear Transfer. Cell Stem Cell, 2007, 1, 346-352.	11.1	137

#	Article	IF	CITATIONS
73	Ras-MAPK signaling promotes trophectoderm formation from embryonic stem cells and mouse embryos. Nature Genetics, 2008, 40, 921-926.	21.4	134
74	ISSCR Guidelines for Stem Cell Research and Clinical Translation: The 2021 update. Stem Cell Reports, 2021, 16, 1398-1408.	4.8	134
75	Overcoming reprogramming resistance of Fanconi anemia cells. Blood, 2012, 119, 5449-5457.	1.4	133
76	Reprogrammed Cells for Disease Modeling and Regenerative Medicine. Annual Review of Medicine, 2013, 64, 277-290.	12.2	124
77	Using CRISPR-Cas9 to Generate Gene-Corrected Autologous iPSCs for the Treatment of Inherited Retinal Degeneration. Molecular Therapy, 2017, 25, 1999-2013.	8.2	121
78	Fetal Deficiency of Lin28 Programs Life-Long Aberrations in Growth and Glucose Metabolism. Stem Cells, 2013, 31, 1563-1573.	3.2	112
79	Distinct and Combinatorial Functions of Jmjd2b/Kdm4b and Jmjd2c/Kdm4c in Mouse Embryonic Stem Cell Identity. Molecular Cell, 2014, 53, 32-48.	9.7	112
80	Confronting stem cell hype. Science, 2016, 352, 776-777.	12.6	109
81	A blueprint for engineering cell fate: current technologies to reprogram cell identity. Cell Research, 2013, 23, 33-48.	12.0	108
82	From fibroblasts to iPS cells: Induced pluripotency by defined factors. Journal of Cellular Biochemistry, 2008, 105, 949-955.	2.6	106
83	Activity of dual SRC-ABL inhibitors highlights the role of BCR/ABL kinase dynamics in drug resistance. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 9244-9249.	7.1	104
84	ETHICS: The ISSCR Guidelines for Human Embryonic Stem Cell Research. Science, 2007, 315, 603-604.	12.6	104
85	Investigating monogenic and complex diseases with pluripotent stem cells. Nature Reviews Genetics, 2011, 12, 266-275.	16.3	101
86	Blast crisis in a murine model of chronic myelogenous leukemia Proceedings of the National Academy of Sciences of the United States of America, 1991, 88, 11335-11338.	7.1	100
87	Human embryonic stem cell derivation from poor-quality embryos. Nature Biotechnology, 2008, 26, 212-214.	17.5	100
88	Hematopoietic Development from Human Induced Pluripotent Stem Cells. Annals of the New York Academy of Sciences, 2009, 1176, 219-227.	3.8	100
89	Surface antigen phenotypes of hematopoietic stem cells from embryos and murine embryonic stem cells. Blood, 2009, 114, 268-278.	1.4	100
90	Epoxyeicosatrienoic acids enhance embryonic haematopoiesis and adult marrow engraftment. Nature, 2015, 523, 468-471.	27.8	97

#	Article	IF	CITATIONS
91	De novo generation of HSCs from somatic and pluripotent stem cell sources. Blood, 2015, 125, 2641-2648.	1.4	97
92	Developmental Vitamin D Availability Impacts Hematopoietic Stem Cell Production. Cell Reports, 2016, 17, 458-468.	6.4	97
93	Molecular basis of the first cell fate determination in mouse embryogenesis. Cell Research, 2010, 20, 982-993.	12.0	94
94	Alternative Splicing of MBD2 Supports Self-Renewal in Human Pluripotent Stem Cells. Cell Stem Cell, 2014, 15, 92-101.	11.1	93
95	Accessing naÃ ⁻ ve human pluripotency. Current Opinion in Genetics and Development, 2012, 22, 272-282.	3.3	92
96	Induced Pluripotent Stem Cells with a Mitochondrial DNA Deletion. Stem Cells, 2013, 31, 1287-1297.	3.2	92
97	LIN28 cooperates with WNT signaling to drive invasive intestinal and colorectal adenocarcinoma in mice and humans. Genes and Development, 2015, 29, 1074-1086.	5.9	92
98	Chronic myeloid leukemia: reminiscences and dreams. Haematologica, 2016, 101, 541-558.	3.5	92
99	Clonal analysis of differentiating embryonic stem cells reveals a hematopoietic progenitor with primitive erythroid and adult lymphoid-myeloid potential. Development (Cambridge), 2001, 128, 4597-4604.	2.5	92
100	NF-κB activation impairs somatic cell reprogramming in ageing. Nature Cell Biology, 2015, 17, 1004-1013.	10.3	91
101	Drug discovery for Diamond-Blackfan anemia using reprogrammed hematopoietic progenitors. Science Translational Medicine, 2017, 9, .	12.4	87
102	Cell cycle adaptations of embryonic stem cells. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 19252-19257.	7.1	85
103	In vitro generation of germ cells from murine embryonic stem cells. Nature Protocols, 2006, 1, 2026-2036.	12.0	82
104	New lessons learned from disease modeling with induced pluripotent stem cells. Current Opinion in Genetics and Development, 2012, 22, 500-508.	3.3	81
105	Small-Molecule Inhibitors Disrupt let-7 Oligouridylation and Release the Selective Blockade of let-7 Processing by LIN28. Cell Reports, 2018, 23, 3091-3101.	6.4	81
106	Engineering Hematopoietic Stem Cells: Lessons from Development. Cell Stem Cell, 2016, 18, 707-720.	11.1	79
107	Reconstruction of complex single-cell trajectories using CellRouter. Nature Communications, 2018, 9, 892.	12.8	78
108	Knockdown of Fanconi anemia genes in human embryonic stem cells reveals early developmental defects in the hematopoietic lineage. Blood, 2010, 115, 3453-3462.	1.4	76

#	Article	IF	CITATIONS
109	The Epithelial-Mesenchymal Transition Factor SNAIL Paradoxically Enhances Reprogramming. Stem Cell Reports, 2014, 3, 691-698.	4.8	75
110	Biomechanical forces promote blood development through prostaglandin E2 and the cAMP–PKA signaling axis. Journal of Experimental Medicine, 2015, 212, 665-680.	8.5	74
111	Adenosine signaling promotes hematopoietic stem and progenitor cell emergence. Journal of Experimental Medicine, 2015, 212, 649-663.	8.5	73
112	The LIN28B/let-7 axis is a novel therapeutic pathway in multiple myeloma. Leukemia, 2017, 31, 853-860.	7.2	72
113	Metabolic Switches Linked to Pluripotency and Embryonic Stem Cell Differentiation. Cell Metabolism, 2015, 21, 349-350.	16.2	71
114	microRNA Expression during Trophectoderm Specification. PLoS ONE, 2009, 4, e6143.	2.5	71
115	Regulation of embryonic haematopoietic multipotency by EZH1. Nature, 2018, 553, 506-510.	27.8	70
116	Realistic Prospects for Stem Cell Therapeutics. Hematology American Society of Hematology Education Program, 2003, 2003, 398-418.	2.5	69
117	Gametes from Embryonic Stem Cells: A Cup Half Empty or Half Full?. Science, 2007, 316, 409-410.	12.6	69
118	Lifelong multilineage contribution by embryonic-born blood progenitors. Nature, 2022, 606, 747-753.	27.8	69
119	Progress towards generation of human haematopoietic stem cells. Nature Cell Biology, 2016, 18, 1111-1117.	10.3	68
120	Pluripotent Stem Cell Models of Shwachman-Diamond Syndrome Reveal a Common Mechanism for Pancreatic and Hematopoietic Dysfunction. Cell Stem Cell, 2013, 12, 727-736.	11.1	66
121	YAP Regulates Hematopoietic Stem Cell Formation in Response to the Biomechanical Forces of Blood Flow. Developmental Cell, 2020, 52, 446-460.e5.	7.0	65
122	Stem cells: roadmap to the clinic. Journal of Clinical Investigation, 2010, 120, 8-10.	8.2	65
123	PRC2 Is Required to Maintain Expression of the Maternal Gtl2-Rian-Mirg Locus by Preventing De Novo DNA Methylation in Mouse Embryonic Stem Cells. Cell Reports, 2015, 12, 1456-1470.	6.4	64
124	<i>Cdx</i> gene deficiency compromises embryonic hematopoiesis in the mouse. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 7756-7761.	7.1	62
125	Developmental regulation of myeloerythroid progenitor function by the <i>Lin28b</i> – <i>let-7</i> – <i>Hmga2</i> axis. Journal of Experimental Medicine, 2016, 213, 1497-1512.	8.5	62
126	Common Themes of Dedifferentiation in Somatic Cell Reprogramming and Cancer. Cold Spring Harbor Symposia on Quantitative Biology, 2008, 73, 171-174.	1.1	61

#	Article	IF	CITATIONS
127	Autologous blood cell therapies from pluripotent stem cells. Blood Reviews, 2010, 24, 27-37.	5.7	61
128	Comprehensive Mapping of Pluripotent Stem Cell Metabolism Using Dynamic Genome-Scale Network Modeling. Cell Reports, 2017, 21, 2965-2977.	6.4	61
129	The Lin28/let-7 Pathway Regulates the Mammalian Caudal Body Axis Elongation Program. Developmental Cell, 2019, 48, 396-405.e3.	7.0	60
130	LIN28 phosphorylation by MAPK/ERK couples signalling to the post-transcriptional control ofÂpluripotency. Nature Cell Biology, 2017, 19, 60-67.	10.3	59
131	Stem cells and their niche: a matter of fate. Cellular and Molecular Life Sciences, 2006, 63, 760-766.	5.4	56
132	Stem cells and the evolving notion of cellular identity. Philosophical Transactions of the Royal Society B: Biological Sciences, 2015, 370, 20140376.	4.0	55
133	Lin28 and let-7 regulate the timing of cessation of murine nephrogenesis. Nature Communications, 2019, 10, 168.	12.8	55
134	Pancreatic circulating tumor cell profiling identifies LIN28B as a metastasis driver and drug target. Nature Communications, 2020, 11, 3303.	12.8	55
135	Effect of Developmental Stage of HSC and Recipient on Transplant Outcomes. Developmental Cell, 2014, 29, 621-628.	7.0	53
136	Precise let-7 expression levels balance organ regeneration against tumor suppression. ELife, 2015, 4, e09431.	6.0	53
137	Sex-specific regulation of weight and puberty by the Lin28/let-7 axis. Journal of Endocrinology, 2016, 228, 179-191.	2.6	52
138	After the Storm — A Responsible Path for Genome Editing. New England Journal of Medicine, 2019, 380, 897-899.	27.0	50
139	Metabolic Regulation of Inflammasome Activity Controls Embryonic Hematopoietic Stem and Progenitor Cell Production. Developmental Cell, 2020, 55, 133-149.e6.	7.0	50
140	Derivation and maintenance of human embryonic stem cells from poor-quality in vitro fertilization embryos. Nature Protocols, 2008, 3, 923-933.	12.0	49
141	Modulation of murine embryonic stem cell–derived CD41+c-kit+ hematopoietic progenitors by ectopic expression of Cdx genes. Blood, 2008, 111, 4944-4953.	1.4	48
142	Interactions between Cdx genes and retinoic acid modulate early cardiogenesis. Developmental Biology, 2011, 354, 134-142.	2.0	48
143	<i>Lin28a</i> Regulates Germ Cell Pool Size and Fertility. Stem Cells, 2013, 31, 1001-1009.	3.2	47
144	Flow-induced protein kinase A–CREB pathway acts via BMP signaling to promote HSC emergence. Journal of Experimental Medicine, 2015, 212, 633-648.	8.5	47

#	Article	IF	CITATIONS
145	RNAi Reveals Phase-Specific Global Regulators of Human Somatic Cell Reprogramming. Cell Reports, 2016, 15, 2597-2607.	6.4	47
146	Progress and prospects: gene transfer into embryonic stem cells. Gene Therapy, 2006, 13, 1431-1439.	4.5	44
147	Autocrine and paracrine effects of an ES-cell derived, BCR/ABL-transformed hematopoietic cell line that induces leukemia in mice. Oncogene, 2001, 20, 2636-2646.	5.9	43
148	TGF-β inhibitors stimulate red blood cell production by enhancing self-renewal of BFU-E erythroid progenitors. Blood, 2016, 128, 2637-2641.	1.4	42
149	New ISSCR guidelines: clinical translation of stem cell research. Lancet, The, 2016, 387, 1979-1981.	13.7	42
150	9-(Arenethenyl)purines as Dual Src/Abl Kinase Inhibitors Targeting the Inactive Conformation: Design, Synthesis, and Biological Evaluation. Journal of Medicinal Chemistry, 2009, 52, 4743-4756.	6.4	41
151	Failure to replicate the STAP cell phenomenon. Nature, 2015, 525, E6-E9.	27.8	41
152	Policy: Global standards for stem-cell research. Nature, 2016, 533, 311-313.	27.8	41
153	Notch1 acts via Foxc2 to promote definitive hematopoiesis via effects on hemogenic endothelium. Blood, 2015, 125, 1418-1426.	1.4	40
154	A CLK3-HMGA2 Alternative Splicing Axis Impacts Human Hematopoietic Stem Cell Molecular Identity throughout Development. Cell Stem Cell, 2018, 22, 575-588.e7.	11.1	40
155	Diversification of reprogramming trajectories revealed by parallel single-cell transcriptome and chromatin accessibility sequencing. Science Advances, 2020, 6, .	10.3	37
156	Interferon-Î \pm signaling promotes embryonic HSC maturation. Blood, 2016, 128, 204-216.	1.4	36
157	Polar Extremes in the Clinical Use of Stem Cells. New England Journal of Medicine, 2017, 376, 1075-1077.	27.0	36
158	A nontranscriptional role for Oct4 in the regulation of mitotic entry. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 15768-15773.	7.1	35
159	Interaction of retinoic acid and scl controls primitive blood development. Blood, 2010, 116, 201-209.	1.4	34
160	Chronic Myeloid Leukemia:. Cell, 2004, 119, 314-316.	28.9	33
161	Anticipating Clinical Resistance to Target-Directed Agents. Molecular Diagnosis and Therapy, 2006, 10, 67-76.	3.8	33
162	Scientific and clinical opportunities for modeling blood disorders with embryonic stem cells. Blood, 2006, 107, 2605-2612.	1.4	33

#	Article	IF	CITATIONS
163	Retinoic Acid Blockade Increases Primitive Blood Cell Formation in cdx4 Mutant Zebrafish Embryos, Murine Yolk Sac Explants and Differentiated Embryonic Stem Cells Blood, 2007, 110, 201-201.	1.4	32
164	LIN28B regulates transcription and potentiates MYCN-induced neuroblastoma through binding to ZNF143 at target gene promotors. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 16516-16526.	7.1	31
165	Disruptive reproductive technologies. Science Translational Medicine, 2017, 9, .	12.4	30
166	Building Capacity for a Global Genome Editing Observatory: Conceptual Challenges. Trends in Biotechnology, 2018, 36, 639-641.	9.3	28
167	LIN28 coordinately promotes nucleolar/ribosomal functions and represses the 2C-like transcriptional program in pluripotent stem cells. Protein and Cell, 2022, 13, 490-512.	11.0	28
168	The Cdx-Hox Pathway in Hematopoietic Stem Cell Formation from Embryonic Stem Cells. Annals of the New York Academy of Sciences, 2007, 1106, 197-208.	3.8	27
169	The developmental stage of the hematopoietic niche regulates lineage in <i>MLL-</i> rearranged leukemia. Journal of Experimental Medicine, 2019, 216, 527-538.	8.5	27
170	Calmodulin inhibitors improve erythropoiesis in Diamond-Blackfan anemia. Science Translational Medicine, 2020, 12, .	12.4	26
171	Engineered Murine HSCs Reconstitute Multi-lineage Hematopoiesis and Adaptive Immunity. Cell Reports, 2016, 17, 3178-3192.	6.4	25
172	Mitochondrial and Redox Modifications in Huntington Disease Induced Pluripotent Stem Cells Rescued by CRISPR/Cas9 CAGs Targeting. Frontiers in Cell and Developmental Biology, 2020, 8, 576592.	3.7	24
173	rRNA biogenesis regulates mouse 2C-like state by 3D structure reorganization of peri-nucleolar heterochromatin. Nature Communications, 2021, 12, 6365.	12.8	24
174	Towards combination target-directed chemotherapy for chronic myeloid leukemia: Role of farnesyl transferase inhibitors. Seminars in Hematology, 2003, 40, 11-14.	3.4	23
175	Patterning definitive hematopoietic stem cells from embryonic stem cells. Experimental Hematology, 2005, 33, 971-979.	0.4	23
176	Transgene Expression and RNA Interference in Embryonic Stem Cells. Methods in Enzymology, 2006, 420, 49-64.	1.0	23
177	Application of induced pluripotent stem cells to hematologic disease. Cytotherapy, 2009, 11, 980-989.	0.7	23
178	Building Capacity for a Global Genome Editing Observatory: Institutional Design. Trends in Biotechnology, 2018, 36, 741-743.	9.3	23
179	Lin28b regulates age-dependent differences in murine platelet function. Blood Advances, 2019, 3, 72-82.	5.2	22
180	A screen to identify drug resistant variants to target-directed anti-cancer agents. Biological Procedures Online, 2003, 5, 204-210.	2.9	21

#	Article	IF	CITATIONS
181	Disease Models from Pluripotent Stem Cells. Annals of the New York Academy of Sciences, 2009, 1176, 191-196.	3.8	21
182	Hematopoietic stem cells develop in the absence of endothelial cadherin 5 expression. Blood, 2015, 126, 2811-2820.	1.4	20
183	The role of Lin28b in myeloid and mast cell differentiation and mast cell malignancy. Leukemia, 2015, 29, 1320-1330.	7.2	20
184	AP24163 Inhibits the Gatekeeper Mutant of BCRâ€ABL and Suppresses <i>In vitro</i> Resistance. Chemical Biology and Drug Design, 2010, 75, 223-227.	3.2	19
185	Cellular Alchemy and the Golden Age of Reprogramming. Cell, 2012, 151, 1151-1154.	28.9	19
186	A systems biology pipeline identifies regulatory networks for stem cell engineering. Nature Biotechnology, 2019, 37, 810-818.	17.5	18
187	Towards the Generation of Patient-Specific Pluripotent Stem Cells for Combined Gene and Cell Therapy of Hematologic Disorders. Hematology American Society of Hematology Education Program, 2007, 2007, 17-22.	2.5	17
188	Autologous transplant for CML revisited. Experimental Hematology, 1993, 21, 734-7.	0.4	17
189	microRNAs become macro players in somatic cell reprogramming. Genome Medicine, 2011, 3, 40.	8.2	16
190	A nanobody targeting the LIN28:let-7 interaction fragment of TUT4 blocks uridylation of let-7. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 4653-4663.	7.1	15
191	Caudal genes in blood development and leukemia. Annals of the New York Academy of Sciences, 2012, 1266, 47-54.	3.8	14
192	Human embryonic stem cells flock together. Nature Biotechnology, 2007, 25, 748-750.	17.5	13
193	The Src homology 2 protein Shb promotes cell cycle progression in murine hematopoietic stem cells by regulation of focal adhesion kinase activity. Experimental Cell Research, 2013, 319, 1852-1864.	2.6	13
194	Evidence generation and reproducibility in cell and gene therapy research: A call to action. Molecular Therapy - Methods and Clinical Development, 2021, 22, 11-14.	4.1	13
195	Transplantation of Macaca cynomolgus iPS-derived hematopoietic cells in NSG immunodeficient mice. Haematologica, 2015, 100, e428-e431.	3.5	12
196	LIN28B alters ribosomal dynamics to promote metastasis in MYCN-driven malignancy. Journal of Clinical Investigation, 2021, 131, .	8.2	12
197	Developmental maturation of the hematopoietic system controlled by a Lin28b-let-7-Cbx2 axis. Cell Reports, 2022, 39, 110587.	6.4	12
198	Pluripotent Stem Cells in Research and Treatment of Hemoglobinopathies. Cold Spring Harbor Perspectives in Medicine, 2012, 2, a011841-a011841.	6.2	11

#	Article	IF	CITATIONS
199	Sequential regulation of hemogenic fate and hematopoietic stem and progenitor cell formation from arterial endothelium by Ezh1/2. Stem Cell Reports, 2021, 16, 1718-1734.	4.8	11
200	CellComm infers cellular crosstalk that drives haematopoietic stem and progenitor cell development. Nature Cell Biology, 2022, 24, 579-589.	10.3	11
201	Oncogenic switch and single-agent MET inhibitor sensitivity in a subset of <i>EGFR</i> -mutant lung cancer. Science Translational Medicine, 2021, 13, eabb3738.	12.4	10
202	Oral health care in the 21st century: It is time for the integration of dental and medical education. Journal of Dental Education, 2020, 84, 999-1002.	1.2	10
203	Inhibition of BCR/ABL-T315I by Dismantling the Hydrophobic Spine Blood, 2008, 112, 2129-2129.	1.4	9
204	Transcriptome Dynamics of Hematopoietic Stem Cell Formation Revealed Using a Combinatorial Runx1 and Ly6a Reporter System. Stem Cell Reports, 2020, 14, 956-971.	4.8	8
205	Transgenes Targeted to the HPRT Locus and Expressed from a Tetracycline-Inducible Promoter Are Silenced during Embryonic Stem Cell Differentiation Blood, 2005, 106, 3618-3618.	1.4	8
206	Debugging cellular reprogramming. Nature Cell Biology, 2007, 9, 871-873.	10.3	6
207	Defining cellular identity through network biology. Cell Cycle, 2014, 13, 3313-3314.	2.6	6
208	The Zebrafish Homologue of the Murine Ecotropic Viral Integration Site-1 (. Evi-1) gene Regulates Zebrafish Embryonic Blood Development Blood, 2009, 114, 1461-1461.	1.4	6
209	Dodging the Magic Bullet: Understanding Imatinib Resistance. Cancer Biology and Therapy, 2003, 2, 110-111.	3.4	5
210	Hematopoietic defects and iPSC disease modeling: Lessons learned. Immunology Letters, 2013, 155, 18-20.	2.5	5
211	Deriving blood stem cells from pluripotent stem cells for research and therapy. Best Practice and Research in Clinical Haematology, 2014, 27, 293-297.	1.7	5
212	Two new routes to make blood: Hematopoietic specification from pluripotent cell lines versus reprogramming of somatic cells. Experimental Hematology, 2015, 43, 756-759.	0.4	5
213	Lin28 paralogs regulate lung branching morphogenesis. Cell Reports, 2021, 36, 109408.	6.4	5
214	Efficient Gene Knockdowns in Human Embryonic Stem Cells Using Lentiviral-Based RNAi. Methods in Molecular Biology, 2009, 482, 35-42.	0.9	5
215	Hypoxic, glycolytic metabolism is a vulnerability of B-acute lymphoblastic leukemia-initiating cells. Cell Reports, 2022, 39, 110752.	6.4	5
216	Derivation of human embryonic stem cells with NEMO deficiency. Stem Cell Research, 2012, 8, 410-415.	0.7	4

#	Article	IF	CITATIONS
217	COVID Highlights Another Crisis: Lack of Black Physicians and Scientists. Med, 2021, 2, 2-3.	4.4	4
218	Hematopoietic Development From Human Induced Pluripotent Stem Cells Blood, 2009, 114, 2530-2530.	1.4	4
219	Rationalizing Autotransplant Strategies for Chronic Myeloid Leukemia. Leukemia and Lymphoma, 1996, 21, 353-358.	1.3	3
220	Autophagy: It's in Your Blood. Developmental Cell, 2017, 40, 518-520.	7.0	3
221	Valine starvation leads to a hungry niche. Nature, 2017, 541, 166-167.	27.8	3
222	Lin28B/Let-7 Axis Regulates Multiple Myeloma Proliferation By Enhancing c-Myc and Ras Survival Pathways. Blood, 2013, 122, 273-273.	1.4	3
223	Hematopoietic Stem and Progenitor Cells from Human Pluripotent Stem Cells Via Transcription Factor Conversion of Hemogenic Endothelium. Blood, 2016, 128, 371-371.	1.4	3
224	Signaling through RNA-binding proteins as a cell fate regulatory mechanism. Cell Cycle, 2017, 16, 723-724.	2.6	2
225	Reassembling embryos in vitro from component stem cells. Cell Research, 2017, 27, 961-962.	12.0	2
226	Bone Marrow Adipocytes Prevent Hematopoietic Expansion in Homeostasis and in Bone Marrow Transplantation. Blood, 2008, 112, 551-551.	1.4	2
227	Proteolytic autodigestion. Cell Cycle, 2013, 12, 3457-3458.	2.6	1
228	Dissecting reprogramming, differentiation and conversion with network biology. Leukemia Supplements, 2014, 3, S3-S4.	0.1	1
229	Is There Merit in Merit Aid?. New England Journal of Medicine, 2017, 377, 2415-2417.	27.0	1
230	Novel Epigenetic Vulnerabilities for Diffuse Large B-Cell Lymphoma. Blood, 2018, 132, 2600-2600.	1.4	1
231	BCR-ABL Kinase Dynamics and Drug Resistance Blood, 2005, 106, 1996-1996.	1.4	1
232	Monitoring Imatinib Resistance with a "Polony―Assay: Towards Tailored Therapy of Chronic Myelogenous Leukemia (CML) Blood, 2006, 108, 837-837.	1.4	1
233	A Unified Mechanism of Tyrosine Kinase Regulation by the Gatekeeper Residue Blood, 2007, 110, 223-223.	1.4	1
234	A Systems Biology Approach to Study the Acquisition of Adult Repopulating Potential During Hematopoietic Stem Cell Ontogeny Blood, 2009, 114, 1479-1479.	1.4	1

#	Article	IF	CITATIONS
235	Telomere Elongation in Dyskeratosis Congenita Induced Pluripotent Stem Cells Blood, 2009, 114, 497-497.	1.4	1
236	The Rho GTPase Rac1 Is Not Required for Definitive Hematopoietic Specification in ES-Derived Hematopoiesis Blood, 2009, 114, 1494-1494.	1.4	1
237	An induced pluripotent stem cell model of Fanconi anemia reveals mechanisms of p53-driven progenitor cell differentiation. Blood Advances, 2020, 4, 4679-4692.	5.2	1
238	Mechanisms of Leukemia Stem Cell Plasticity Revealed By Single Cell Analysis. Blood, 2020, 136, 32-32.	1.4	1
239	Simplifying hESC culture. Blood, 2005, 105, 4550-4550.	1.4	0
240	Part D: Directed Differentiation of Human Embryonic Stem Cells into Hematopoeiticin vivo Repopulating Cells. , 0, , 273-285.		0
241	BMP Signaling Via the Cdx-Hox Pathway Allocates Mesoderm to Hematopoietic vs Cardiac Fates Blood, 2006, 108, 4183-4183.	1.4	0
242	Prostaglandin E2 Is a Potent Regulator of Vertebrate Hematopoietic Stem Cell Homeostasis Blood, 2006, 108, 680-680.	1.4	0
243	Imatinib-Resistant BCR-ABL Mutant Cellular Screening Paradigm To Characterize Promising Small-Molecule Inhibitors: T315I-BCR-ABL Targeted Drug Discovery Blood, 2006, 108, 2181-2181.	1.4	0
244	Mesodermal Patterning Activity of the Transcription Factor SCL. Blood, 2007, 110, 1241-1241.	1.4	0
245	A Critical Role for CCL Chemokines in the Immuno-Protection Induced by Type I Interferons and IRF8/ICSBP Against Bcr/Abl-Induced Leukemia Blood, 2007, 110, 1001-1001.	1.4	0
246	Bone Marrow Adipocytes: A Novel Negative Regulator of the Hematopoietic Microenvironment Blood, 2007, 110, 1405-1405.	1.4	0
247	Interspecies Nuclear Transfer of Human Adult Dermal Fibroblast Cells Biology of Reproduction, 2008, 78, 120-121.	2.7	0
248	Patient-Specific Induced Pluripotent Stem Cells in Hurler Syndrome. Blood, 2008, 112, 386-386.	1.4	0
249	Cdx4 Is Dispensable for Murine Hematopoiesis and MLL-AF9 Mediated Leukemogenesis Blood, 2008, 112, 1404-1404.	1.4	0
250	Patient-Specific Pluripotent Stem Cells for Hematologic Disease Blood, 2009, 114, SCI-40-SCI-40.	1.4	0
251	Derivation of Disease-Free Induced Pluripotent Stem Cells From Patients with Pearson Marrow Pancreas Syndrome. Blood, 2010, 116, 3-3.	1.4	0
252	BMP and WNT-Directed Transcription Factors TCF7L2/TCF4 and SMAD1 Bind to Distinct Hematopoietic-Specific Target Genes Depending on Cell Lineage. Blood, 2010, 116, 3870-3870.	1.4	0

#	Article	IF	CITATIONS
253	Mechanisms of Resistance to Reprogramming of Cells Defective In the Fanconi Anemia DNA Repair Pathway. Blood, 2010, 116, 196-196.	1.4	0
254	Association of Lin28 Expression and Tumorigenesis in Human Wilms' Tumor Cell Lines. FASEB Journal, 2013, 27, 764.1.	0.5	0
255	Msi2 Directly Regulates The TGF-β Signaling Pathway and Myeloid Lineage Bias In Hematopoietic Stem Cells. Blood, 2013, 122, 468-468.	1.4	0
256	Inhibition of Let-7 Maturation By Lin28b Controls Timing of Embryonic and Adult Myeloid Progenitor Phenotypes during Development. Blood, 2014, 124, 763-763.	1.4	0
257	Modeling Diamond Blackfan Anemia in Vivo Using Human Induced Pluripotent Stem Cells. Blood, 2014, 124, 359-359.	1.4	0
258	Hematopoietic Stem Cells Develop in the Absence of Endothelial Cadherin 5 Expression. Blood, 2015, 126, 1165-1165.	1.4	0
259	MYC Regulation Via the LIN28B/Let-7 Axis in Multiple Myeloma. Blood, 2015, 126, 1755-1755.	1.4	0
260	Piezo1-Sensitive Biomechanical Pulsation Stimulates Long-Term Hematopoietic Stem Cell Formation. Blood, 2018, 132, 3826-3826.	1.4	0
261	Modeling Fanconi Anemia Using Human Induced Pluripotent Stem Cells By Reversible Complementation. Blood, 2018, 132, 3856-3856.	1.4	0
262	An Essential Role for the RNA Editor-Exonuclease Axis in Terminal Erythroid Differentiation. Blood, 2020, 136, 3-3.	1.4	0
263	Single Cell Resolution Mapping of Hematopoietic Stem and Progenitor Cell States throughout Human Life. Blood, 2020, 136, 31-31.	1.4	0
264	Dipping a toe in the fountain of youth. Nature Aging, 2022, 2, 192-194.	11.6	0