
Stephen M Hedrick

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5432676/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	FOXO1 constrains activation and regulates senescence in CD8 TÂcells. Cell Reports, 2021, 34, 108674.	2.9	40
2	Bromodomain protein BRD4 directs and sustains CD8 T cell differentiation during infection. Journal of Experimental Medicine, 2021, 218, .	4.2	19
3	CopyCatchers are versatile active genetic elements that detect and quantify inter-homolog somatic gene conversion. Nature Communications, 2021, 12, 2625.	5.8	7
4	Meiotic Cas9 expression mediates gene conversion in the male and female mouse germline. PLoS Biology, 2021, 19, e3001478.	2.6	29
5	Delineation of a molecularly distinct terminally differentiated memory CD8 T cell population. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 25667-25678.	3.3	73
6	A key control point in the T cell response to chronic infection and neoplasia: FOXO1. Current Opinion in Immunology, 2020, 63, 51-60.	2.4	7
7	Editorial overview: Lymphocyte effector subsets: blurring the frontiers. Current Opinion in Immunology, 2020, 63, iii-v.	2.4	Ο
8	Continuous activity of Foxo1 is required to prevent anergy and maintain the memory state of CD8+ T cells. Journal of Experimental Medicine, 2018, 215, 575-594.	4.2	60
9	The Effects of Dendritic Cell Hypersensitivity on Persistent Viral Infection. Journal of Immunology, 2018, 200, 1335-1346.	0.4	6
10	Active Maintenance of T Cell Memory in Acute and Chronic Viral Infection Depends on Continuous Expression of FOXO1. Cell Reports, 2018, 22, 3454-3467.	2.9	61
11	The Imperative to Vaccinate. Journal of Pediatrics, 2018, 201, 259-263.	0.9	Ο
12	A rheostat tuning thymic selection. Nature Immunology, 2017, 18, 713-714.	7.0	0
13	FOXO1 opposition of CD8 ⁺ T cell effector programming confers early memory properties and phenotypic diversity. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E8865-E8874.	3.3	72
14	Understanding Immunity through the Lens of Disease Ecology. Trends in Immunology, 2017, 38, 888-903.	2.9	14
15	Affinity and dose of TCR engagement yield proportional enhancer and gene activity in CD4+ T cells. ELife, 2016, 5, .	2.8	65
16	Gain of Toxicity from ALS/FTD-Linked Repeat Expansions in C9ORF72 Is Alleviated by Antisense Oligonucleotides Targeting GGGGCC-Containing RNAs. Neuron, 2016, 90, 535-550.	3.8	437
17	Foxo3 Transcription Factor Drives Pathogenic TÂHelper 1 Differentiation by Inducing the Expression of Eomes. Immunity, 2016, 45, 774-787.	6.6	57
18	ICOS Coreceptor Signaling Inactivates the Transcription Factor FOXO1 to Promote Tfh Cell Differentiation. Immunity, 2015, 42, 239-251.	6.6	204

#	Article	IF	CITATIONS
19	Loss of Murine FOXO3 in Cells of the Myeloid Lineage Enhances Myelopoiesis but Protects from K/BxN-Serum Transfer-Induced Arthritis. PLoS ONE, 2015, 10, e0126728.	1.1	5
20	Caspase-8 Acts as a Molecular Rheostat To Limit RIPK1- and MyD88-Mediated Dendritic Cell Activation. Journal of Immunology, 2014, 192, 5548-5560.	0.4	42
21	Noncanonical Mode of ERK Action Controls Alternative αβ and γδT Cell Lineage Fates. Immunity, 2014, 41, 934-946.	6.6	28
22	Single-cell mass cytometry of TCR signaling: Amplification of small initial differences results in low ERK activation in NOD mice. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 16466-16471.	3.3	50
23	Transcription Factor Binding Site Analysis Identifies FOXO Transcription Factors as Regulators of the Cutaneous Wound Healing Process. PLoS ONE, 2014, 9, e89274.	1.1	22
24	Differentiation of CD8 memory T cells depends on Foxo1. Journal of Experimental Medicine, 2013, 210, 1189-1200.	4.2	190
25	Polar Opposites: Erk Direction of CD4 T Cell Subsets. Journal of Immunology, 2012, 189, 721-731.	0.4	81
26	FOXO transcription factors throughout T cell biology. Nature Reviews Immunology, 2012, 12, 649-661.	10.6	284
27	Positive Selection in the Thymus: An Enigma Wrapped in a Mystery. Journal of Immunology, 2012, 188, 2043-2045.	0.4	8
28	Multivalent Porous Silicon Nanoparticles Enhance the Immune Activation Potency of Agonistic CD40 Antibody. Advanced Materials, 2012, 24, 3981-3987.	11.1	93
29	Nanoparticles for Imunotherapy: Multivalent Porous Silicon Nanoparticles Enhance the Immune Activation Potency of Agonistic CD40 Antibody (Adv. Mater. 29/2012). Advanced Materials, 2012, 24, 4025-4025.	11.1	1
30	Caspase-8 regulates TNF-α-induced epithelial necroptosis and terminal ileitis. Nature, 2011, 477, 335-339.	13.7	737
31	Highly Specialized Role of Forkhead Box O Transcription Factors in the Immune System. Antioxidants and Redox Signaling, 2011, 14, 663-674.	2.5	73
32	Mechanisms of necroptosis in T cells. Journal of Experimental Medicine, 2011, 208, 633-641.	4.2	190
33	Foxo Transcription Factors Control Regulatory T Cell Development and Function. Immunity, 2010, 33, 890-904.	6.6	369
34	Intertwined pathways of programmed cell death in immunity. Immunological Reviews, 2010, 236, 41-53.	2.8	39
35	Relative Over-Reactivity of Human versus Chimpanzee Lymphocytes: Implications for the Human Diseases Associated with Immune Activation. Journal of Immunology, 2010, 184, 4185-4195.	0.4	45
36	Immune System: Not So Superior. Science, 2009, 325, 1623-1624.	6.0	5

#	Article	IF	CITATIONS
37	Foxo1 links homing and survival of naive T cells by regulating L-selectin, CCR7 and interleukin 7 receptor. Nature Immunology, 2009, 10, 176-184.	7.0	481
38	Transcription factor Foxo3 controls the magnitude of T cell immune responses by modulating the function of dendritic cells. Nature Immunology, 2009, 10, 504-513.	7.0	199
39	The cunning little vixen: Foxo and the cycle of life and death. Nature Immunology, 2009, 10, 1057-1063.	7.0	149
40	MAPK3/1 (ERK1/2) in Ovarian Granulosa Cells Are Essential for Female Fertility. Science, 2009, 324, 938-941.	6.0	559
41	Identification of RIP1 kinase as a specific cellular target of necrostatins. Nature Chemical Biology, 2008, 4, 313-321.	3.9	1,708
42	Thymus Lineage Commitment: A Single Switch. Immunity, 2008, 28, 297-299.	6.6	20
43	Drak2 Contributes to West Nile Virus Entry into the Brain and Lethal Encephalitis. Journal of Immunology, 2008, 181, 2084-2091.	0.4	58
44	Antigen-mediated T cell expansion regulated by parallel pathways of death. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 17463-17468.	3.3	130
45	The Erk2 MAPK Regulates CD8 T Cell Proliferation and Survival. Journal of Immunology, 2008, 181, 7617-7629.	0.4	145
46	Drak2 is critical for the survival of autoreactive T cells. FASEB Journal, 2008, 22, 667.22.	0.2	0
47	The CD95 Receptor: Apoptosis Revisited. Cell, 2007, 129, 447-450.	13.5	352
48	A semisynthetic epitope for kinase substrates. Nature Methods, 2007, 4, 511-516.	9.0	278
49	Altered Development of CD8+ T Cell Lineages in Mice Deficient for the Tec Kinases Itk and Rlk. Immunity, 2006, 25, 93-104.	6.6	185
50	Cutting Edge: Latecomer CD8 T Cells Are Imprinted with a Unique Differentiation Program. Journal of Immunology, 2006, 177, 777-781.	0.4	114
51	The TCR of Mice and Men. Journal of Immunology, 2006, 176, 2681-2682.	0.4	1
52	Suppressor of cytokine signaling 1 is required for the differentiation of CD4+ T cells. Nature Immunology, 2005, 6, 715-721.	7.0	38
53	Cutting Edge: Innate Immunity Conferred by B Cells Is Regulated by Caspase-8. Journal of Immunology, 2005, 175, 3469-3473.	0.4	159
54	A Pivotal Role for the Multifunctional Calcium/Calmodulin-Dependent Protein Kinase II in T Cells: From Activation to Unresponsiveness. Journal of Immunology, 2005, 174, 5583-5592.	0.4	62

#	Article	IF	CITATIONS
55	The Role of Erk1 and Erk2 in Multiple Stages of T Cell Development. Immunity, 2005, 23, 431-443.	6.6	309
56	Targeted Deletion of Protein Kinase C λ Reveals a Distribution of Functions between the Two Atypical Protein Kinase C Isoforms. Journal of Immunology, 2004, 173, 3250-3260.	0.4	87
57	The Acquired Immune System. Immunity, 2004, 21, 607-615.	6.6	102
58	A Deficiency in Drak2 Results in a T Cell Hypersensitivity and an Unexpected Resistance to Autoimmunity. Immunity, 2004, 21, 781-791.	6.6	67
59	The Requirements for Fas-Associated Death Domain Signaling in Mature T Cell Activation and Survival. Journal of Immunology, 2003, 171, 247-256.	0.4	66
60	CD33/Siglec-3 Binding Specificity, Expression Pattern, and Consequences of Gene Deletion in Mice. Molecular and Cellular Biology, 2003, 23, 4199-4206.	1.1	97
61	Molecular Cloning and Characterization of a Novel Mouse Macrophage C-type Lectin, mMGL2, Which Has a Distinct Carbohydrate Specificity from mMGL1. Journal of Biological Chemistry, 2002, 277, 28892-28901.	1.6	102
62	T Cell Development. Immunity, 2002, 16, 619-622.	6.6	37
63	Regulation of the helix-loop-helix proteins, E2A and Id3, by the Ras-ERK MAPK cascade. Nature Immunology, 2001, 2, 165-171.	7.0	243
64	Effects of a Constitutively Active Form of Calcineurin on T Cell Activation and Thymic Selection. Journal of Immunology, 2000, 165, 3713-3721.	0.4	37
65	Combinatorial Roles of the Nuclear Receptor Corepressor in Transcription and Development. Cell, 2000, 102, 753-763.	13.5	475
66	A Role for CaMKII in T Cell Memory. Cell, 2000, 100, 457-467.	13.5	65
67	Thymocyte Maturation Is Regulated by the Activity of the Helix-Loop-Helix Protein, E47. Journal of Experimental Medicine, 1999, 190, 1605-1616.	4.2	114
68	T-cell fate. Immunological Reviews, 1998, 165, 95-110.	2.8	14
69	A Role for FADD in T Cell Activation and Development. Immunity, 1998, 8, 439-449.	6.6	236
70	Schlafen, a New Family of Growth Regulatory Genes that Affect Thymocyte Development. Immunity, 1998, 9, 657-668.	6.6	193
71	The Influence of the MAPK Pathway on T Cell Lineage Commitment. Immunity, 1997, 7, 609-618.	6.6	211
72	MHC Class II–Specific T Cells Can Develop in the CD8 Lineage When CD4 Is Absent. Immunity, 1996, 4, 337-347.	6.6	209

#	Article	IF	CITATIONS
73	The enigmatic specificity of $\hat{1}^{3}\hat{1}$ T cells. Immunologic Research, 1995, 14, 163-175.	1.3	5
74	Intracellular signals that mediate thymic negative selection. Immunity, 1994, 1, 45-56.	6.6	56
75	Bcl-2 is upregulated at the CD4+ CD8+ stage during positive selection and promotes thymocyte differentiation at several control Points. Immunity, 1994, 1, 197-205.	6.6	245
76	Evidence for programmed cell death of self-reactive Î ³ δT cell receptor-positive thymocytes. European Journal of Immunology, 1993, 23, 2482-2487.	1.6	15
77	Chimeric T Cell Receptor-Immunoglobulin Molecules: Function and Applications. International Reviews of Immunology, 1993, 10, 279-290.	1.5	6
78	Developmental abnormalities in transgenic mice expressing a sialic acid-specific 9-O-acetylesterase. Cell, 1991, 65, 65-74.	13.5	143
79	Helper T-Cell Subsets: Phenotype, Function and the Role of Lymphokines in Regulating their Development. Immunological Reviews, 1991, 123, 115-144.	2.8	409
80	Self-reactive $\hat{I}^{3}\hat{I}$ T cells are eliminated in the thymus. Nature, 1990, 343, 714-719.	13.7	212
81	Selective development of CD4+ T cells in transgenic mice expressing a class II MHC-restricted antigen receptor. Nature, 1989, 341, 746-749.	13.7	609
82	Expression of a hybrid immunoglobulin-T cell receptor protein in transgenic mice. Cell, 1989, 58, 911-921.	13.5	109
83	Analysis of specificity for antigen, Mls, and allogeneic MHC by transfer of T-cell receptor α- and β-chain genes. Nature, 1988, 336, 580-583.	13.7	53
84	The Influence of MHC Gene Products on the Generation of an Antigen-Specific T-Cell Repertoirea. Annals of the New York Academy of Sciences, 1988, 532, 16-17.	1.8	0
85	The Influence of MHC Gene Products on the Generation of an Antigen-Specific T-Cell Repertoire. Annals of the New York Academy of Sciences, 1988, 532, 18-32.	1.8	3
86	Site-directed mutations in the VDJ junctional region of a T cell receptor \hat{I}^2 chain cause changes in antigenic peptide recognition. Cell, 1988, 54, 473-484.	13.5	181
87	The molecular basis of alloreactivity in antigen-specific, major histocompatibility complex-restricted T cell clones. Cell, 1987, 51, 59-69.	13.5	88
88	Correlations between T-cell specificity and the structure of the antigen receptor. Nature, 1986, 321, 219-226.	13.7	376
89	Isolation of a cDNA clone corresponding to an X-linked gene family (XLR) closely linked to the murine immunodeficiency disorder xid. Nature, 1985, 314, 369-372.	13.7	64
90	Isolation of cDNA clones encoding T cell-specific membrane-associated proteins. Nature, 1984, 308, 149-153.	13.7	1,220

#	Article	IF	CITATIONS
91	Sequence relationships between putative T-cell receptor polypeptides and immunoglobulins. Nature, 1984, 308, 153-158.	13.7	725
92	A Murine T Cell Receptor Gene Complex: Isolation, Structure and Rearrangement. Immunological Reviews, 1984, 81, 235-258.	2.8	87