Maritza Gj Veprek-Heijman

List of Publications by Year

 in descending orderSource: https:|/exaly.com/author-pdf/5432635/publications.pdf
Version: 2024-02-01

2.2

18
0.8

52 temperature. Thin Solid Films, 2012, 522, 274-282.
2
2.2

140
Superhard nanocomposites: Origin of hardness enhancement, properties and applications. Surface and
Coatings Technology, 2010, 204, 1898-1906.

3
Search for Ultrahard Materials and Recent Progress in the Understanding of Hardness Enhancement and Properties of Nanocomposites. Solid State Phenomena, 2010, 159, 1-10.

5 The Fundamentals of Hard and Superhard Nanocomposites and Heterostructures. , 2010, , 1-34.

6 The Fundamentals of Hard and Superhard Nanocomposites and Heterostructures. , 2010, , 1-34.

Non-linear finite element constitutive modeling of indentation into super- and ultrahard materials:
$7 \quad$ The plastic deformation of the diamond tip and the ratio of hardness to tensile yield strength of
$2.2 \quad 35$
super- and ultrahard nanocomposites. Surface and Coatings Technology, 2009, 203, 3385-3391.

8 Industrial applications of superhard nanocomposite coatings. Surface and Coatings Technology, 2008, 202, 5063-5073.
2.2

342

9 Role of oxygen impurities in etching of silicon by atomic hydrogen. Journal of Vacuum Science and
Technology A: Vacuum, Surfaces and Films, 2008, 26, 313-320.

The formation and role of interfaces in superhard nc-MenN/a-Si3N4 nanocomposites. Surface and
Coatings Technology, 2007, 201, 6064-6070.
2.2

96

Chemistry, physics and fracture mechanics in search for superhard materials, and the origin of
11 superhardness in nc-TiN/a-Si3N4 and related nanocomposites. Journal of Physics and Chemistry of
1.9

Solids, 2007, 68, 1161-1168.

12 Tailoring Raney-catalysts for the selective hydrogenation of butyronitrile to n-butylamine. Journal of Catalysis, 2007, 245, 237-248.
3.1

47
13 Properties of superhard nc-TiN/a-BN and nc-TiN/a-BN/a-TiB2 nanocomposite coatings prepared by plasma
$2.2 \quad 73$
induced chemical vapor deposition. Surface and Coatings Technology, 2006, 200, 2978-2989.

14 Different approaches to superhard coatings and nanocomposites. Thin Solid Films, 2005, 476, 1-29.
0.8

704

15 Thermally activated relaxation processes in superhard nc-TiN/a-SiN and nc-(TiAl)N/a-SiN
15 nanocomposites studied by means of internal friction measurements. Composites Science and
3.8

20
Technology, 2005, 65, 735-740.
Possible role of oxygen impurities in degradation of nc-TiNâ^•a-Si[sub 3]N[sub 4] nanocomposites. Journal
16 of Vacuum Science \& Technology an Official Journal of the American Vacuum Society B,
1.6

55 Microelectronics Processing and Phenomena, 2005, 23, L17.

[^0]2.6

115

[^0]: Conditions required for achieving superhardness of â\%o $¥ 45 \mathrm{GPa}$ in nc-TiN/a-Si3N4 nanocomposites.
 17 Materials Science \& Engineering A: Structural Materials: Properties, Microstructure and
 Processing, 2004, 384, 102-116.

