Shuang Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5432151/publications.pdf

Version: 2024-02-01

26	685	14	25
papers	citations	h-index	g-index
26	26	26	1193
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Plant6mA: A predictor for predicting N6-methyladenine sites with lightweight structure in plant genomes. Methods, 2022, 204, 126-131.	3.8	2
2	DeepMC-iNABP: Deep learning for multiclass identification and classification of nucleic acid-binding proteins. Computational and Structural Biotechnology Journal, 2022, 20, 2020-2028.	4.1	14
3	Mechanisms and treatments of myocardial injury in patients with corona virus disease 2019. Life Sciences, 2020, 262, 118496.	4.3	8
4	Reduced Sirtuin1 signalling exacerbates diabetic mice hindlimb ischaemia injury and inhibits the protective effect of a liver X receptor agonist. Journal of Cellular and Molecular Medicine, 2020, 24, 5476-5490.	3.6	5
5	NF2 deficiency accelerates neointima hyperplasia following vascular injury via promoting YAP-TEAD1 interaction in vascular smooth muscle cells. Aging, 2020, 12, 9726-9744.	3.1	13
6	The Role of Myokines and Adipokines in Hypertension and Hypertension-related Complications. Hypertension Research, 2019, 42, 1544-1551.	2.7	25
7	TRPA1 Promotes Cardiac Myofibroblast Transdifferentiation after Myocardial Infarction Injury via the Calcineurin-NFAT-DYRK1A Signaling Pathway. Oxidative Medicine and Cellular Longevity, 2019, 2019, 1-17.	4.0	23
8	Activation of melatonin receptor 2 but not melatonin receptor 1 mediates melatonin onferred cardioprotection against myocardial ischemia/reperfusion injury. Journal of Pineal Research, 2019, 67, e12571.	7.4	73
9	Transmembrane protein 66 attenuates neointimal hyperplasia after carotid artery injury by SOCE inactivation. Molecular Medicine Reports, 2019, 20, 1436-1442.	2.4	5
10	Hordenine protects against hyperglycemia-associated renal complications in streptozotocin-induced diabetic mice. Biomedicine and Pharmacotherapy, 2018, 104, 315-324.	5.6	19
11	ZP2495 Protects against Myocardial Ischemia/Reperfusion Injury in Diabetic Mice through Improvement of Cardiac Metabolism and Mitochondrial Function: The Possible Involvement of AMPK-FoxO3a Signal Pathway. Oxidative Medicine and Cellular Longevity, 2018, 2018, 1-15.	4.0	9
12	A Novel Mechanism of Mesenchymal Stromal Cell-Mediated Protection against Sepsis: Restricting Inflammasome Activation in Macrophages by Increasing Mitophagy and Decreasing Mitochondrial ROS. Oxidative Medicine and Cellular Longevity, 2018, 2018, 1-15.	4.0	40
13	Oleanolic acid attenuates PCBs-induced adiposity and insulin resistance via HNF1b-mediated regulation of redox and PPARÎ ³ signaling. Free Radical Biology and Medicine, 2018, 124, 122-134.	2.9	43
14	Mesenchymal stem cells in alleviating sepsis-induced mice cardiac dysfunction via inhibition of mTORC1-p70S6K signal pathway. Cell Death Discovery, 2017, 3, 16097.	4.7	10
15	Reduced silent information regulator 1 signaling exacerbates sepsis-induced myocardial injury and mitigates the protective effect of a liver X receptor agonist. Free Radical Biology and Medicine, 2017, $113, 291-303$.	2.9	64
16	Cyclosporine A Suppressed Glucose Oxidase Induced P53 Mitochondrial Translocation and Hepatic Cell Apoptosis through Blocking Mitochondrial Permeability Transition. International Journal of Biological Sciences, 2016, 12, 198-209.	6.4	29
17	PDE5 inhibitors protect against post-infarction heart failure. Frontiers in Bioscience - Landmark, 2016, 21, 1194-1210.	3.0	15
18	Oncostatin M-induced cardiomyocyte dedifferentiation regulates the progression of diabetic cardiomyopathy through B-Raf/Mek/Erk signaling pathway. Acta Biochimica Et Biophysica Sinica, 2016, 48, 257-265.	2.0	19

SHUANG LI

#	Article	IF	CITATION
19	Lin28a protects against cardiac ischaemia/reperfusion injury in diabetic mice through the insulinâ€Pl3Kâ€m TOR pathway. Journal of Cellular and Molecular Medicine, 2015, 19, 1174-1182.	3.6	28
20	Oncostatin M (<scp>OSM</scp>) protects against cardiac ischaemia/reperfusion injury in diabetic mice by regulating apoptosis, mitochondrial biogenesis and insulin sensitivity. Journal of Cellular and Molecular Medicine, 2015, 19, 1296-1307.	3.6	49
21	HIF- \hat{l} ± decoy oligodeoxynucleotides inhibit HIF- \hat{l} ± signaling and breast cancer proliferation. International Journal of Oncology, 2015, 46, 215-222.	3.3	9
22	Cancer stem cells, lymphangiogenesis, and lymphatic metastasis. Cancer Letters, 2015, 357, 438-447.	7.2	55
23	High glucose and/or high insulin affects HIF-1 signaling by regulating AIP1 in human umbilical vein endothelial cells. Diabetes Research and Clinical Practice, 2015, 109, 48-56.	2.8	9
24	A promising approach to iPSC-based cell therapy for diabetic wound treatment: Direct lineage reprogramming. Molecular and Cellular Endocrinology, 2014, 393, 8-15.	3.2	11
25	Rosuvastatin enhances the therapeutic efficacy of adipose-derived mesenchymal stem cells for myocardial infarction via PI3K/Akt and MEK/ERK pathways. Basic Research in Cardiology, 2013, 108, 333.	5.9	108
26	GW24-e0416â€In vivomolecular imaging of rosuvasta tin on adipose derived stem cells survival inpost-infarcted mice hearts: role of PI3K/Akt. Heart, 2013, 99, A1.2-A1.	2.9	0