Kisla Prislen Félix Siqueira

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5431904/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Experimental evaluation of the activity and selectivity of pure MnWO4 and doped with rare earth ions in the CO2 photoreduction process. Materials Research Bulletin, 2022, 153, 111912.	2.7	9
2	The relationship between crystal structures and thermochromism in CoMoO4. Chemical Papers, 2021, 75, 237-248.	1.0	12
3	Microwave-assisted synthesis of Ca1-xMnxMoO4 (x = 0, 0.2, 0.7, and 1) and its application in artificial photosynthesis. Ceramics International, 2021, 47, 5388-5398.	2.3	5
4	Synthesis of NiMoO4 ceramics by proteic sol-gel method and investigation of their catalytic properties in hydrogen production. Materials Chemistry and Physics, 2021, 262, 124301.	2.0	5
5	Luminescence properties of PrNbO4 and EuNbO4 orthoniobates and investigation of their structural phase transition by high-temperature Raman spectroscopy. Journal of Luminescence, 2021, 238, 118284.	1.5	7
6	New insight on the use of diffuse reflectance spectroscopy for the optical characterization of Ln2Ge2O7 (Ln = lanthanides) pyrogermanates. Journal of Luminescence, 2021, 238, 118312.	1.5	9
7	Influence of temperature on the structural and color properties of nickel molybdates. Materials Research Bulletin, 2020, 122, 110665.	2.7	15
8	A bifunctional catalyst based on Nb and V oxides over alumina: oxidative cleavage of crude glycerol to green formic acid. New Journal of Chemistry, 2020, 44, 8538-8544.	1.4	2
9	Adsorption of organic and inorganic arsenic from aqueous solutions using MgAl-LDH with incorporated nitroprusside. Journal of Colloid and Interface Science, 2020, 575, 194-205.	5.0	46
10	Influence of europium doping on the structural phase-transition temperature of βâ^' and αâ^'CoMoO4 polymorphs. Materials Research Bulletin, 2019, 118, 110517.	2.7	15
11	Synthesis of SmLuO3 and EuLuO3 interlanthanides from hydrothermally-derived nanostructured precursors. Arabian Journal of Chemistry, 2019, 12, 4035-4043.	2.3	2
12	Investigation of Polymorphism and Vibrational Properties of MnMoO ₄ Microcrystals Prepared by a Hydrothermal Process. Crystal Growth and Design, 2018, 18, 2474-2485.	1.4	19
13	Layered double hydroxides for remediation of industrial wastewater containing manganese and fluoride. Journal of Cleaner Production, 2018, 171, 275-284.	4.6	47
14	Electrocatalytic performance of different cobalt molybdate structures for water oxidation in alkaline media. CrystEngComm, 2018, 20, 5592-5601.	1.3	27
15	Thermal, vibrational and optical properties of PrLuO ₃ interlanthanides from hydrothermally-derived precursors. Dalton Transactions, 2017, 46, 825-835.	1.6	2
16	High-temperature antiferroelectric and ferroelectric phase transitions in phase pure LaTaO 4. Ceramics International, 2017, 43, 1543-1551.	2.3	6
17	Micro far-infrared dielectric response of lanthanide orthotantalates for applications in microwave circuitry. Journal of Alloys and Compounds, 2017, 693, 1243-1249.	2.8	15
18	Optical properties of undoped NdTaO 4 , ErTaO 4 and YbTaO 4 ceramics. Journal of Luminescence, 2016, 179, 146-153.	1.5	25

#	Article	IF	CITATIONS
19	Structural and vibrational properties of phase-pure monoclinic NdLuO3 interlanthanides synthesized from nanostructured precursors. Journal of Alloys and Compounds, 2016, 678, 57-64.	2.8	4
20	Optical phonon modes and infrared dielectric properties of monoclinic CoWO ₄ microcrystals. Journal Physics D: Applied Physics, 2016, 49, 045305.	1.3	10
21	Influence of the Matrix on the Red Emission in Europium Self-Activated Orthoceramics. Journal of Physical Chemistry C, 2015, 119, 17825-17835.	1.5	35
22	Effect of the processing parameters on the crystalline structure of lanthanide orthotantalates. Materials Research, 2014, 17, 167-173.	0.6	26
23	Synchrotron X-ray diffraction and Raman spectroscopy of Ln3NbO7 (Ln=La, Pr, Nd, Sm-Lu) ceramics obtained by molten-salt synthesis. Journal of Solid State Chemistry, 2014, 209, 63-68.	1.4	34
24	Lanthanide Orthoantimonate Light Emitters: Structural, Vibrational, and Optical Properties. Chemistry of Materials, 2014, 26, 6351-6360.	3.2	23
25	Crystal structure of fluorite-related Ln3SbO7 (Ln=La–Dy) ceramics studied by synchrotron X-ray diffraction and Raman scattering. Journal of Solid State Chemistry, 2013, 203, 326-332.	1.4	20
26	Structural and thermal evolution studies of LaSbO4 ceramics prepared by solid-state reaction method. Materials Chemistry and Physics, 2013, 140, 255-259.	2.0	9
27	Influence of crystalline structure on the luminescence properties of terbium orthotantalates. Journal of Luminescence, 2013, 138, 133-137.	1.5	16
28	Influence of the processing conditions and chemical environment on the crystal structures and phonon modes of lanthanide orthotantalates. Dalton Transactions, 2011, 40, 9454.	1.6	46
29	Incipient crystallization of transition-metal tungstates under microwaves probed by Raman scattering and transmission electron microscopy. Journal of Nanoparticle Research, 2011, 13, 5927-5933.	0.8	19
30	Microwave-hydrothermal preparation of alkaline-earth-metal tungstates. Journal of Materials Science, 2010, 45, 6083-6093.	1.7	27
31	Crystal structures and phonon modes of Ba(Ca _{1/2} W _{1/2})O ₃ , Ba(Ca _{1/2} Mo _{1/2})O ₃ and Ba(Sr _{1/2} W _{1/2})O ₃ complex perovskites investigated by Raman scattering Journal of Raman Spectroscopy, 2010, 41, 93-97	1.2	9
32	Synthesis and Crystal Structure of Lanthanide Orthoniobates Studied by Vibrational Spectroscopy. Chemistry of Materials, 2010, 22, 2668-2674.	3.2	95
33	Microwave-Hydrothermal Synthesis of Transition Metal Tungstates with Nanosized Particles. Solid State Phenomena, 0, 194, 209-212.	0.3	2