
Bin Xue

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5431784/publications.pdf Version: 2024-02-01

RIN YUE

#	Article	IF	CITATIONS
1	Analyzing aggregation propensities of clinically relevant PTEN mutants: a new culprit in pathogenesis of cancer and other PTENopathies. Journal of Biomolecular Structure and Dynamics, 2020, 38, 2253-2266.	2.0	6
2	The dark side of Alzheimer's disease: unstructured biology of proteins from the amyloid cascade signaling pathway. Cellular and Molecular Life Sciences, 2020, 77, 4163-4208.	2.4	23
3	Computational Disorder Analysis in Ethylene Response Factors Uncovers Binding Motifs Critical to Their Diverse Functions. International Journal of Molecular Sciences, 2020, 21, 74.	1.8	7
4	Intrinsic Disorder in Tetratricopeptide Repeat Proteins. International Journal of Molecular Sciences, 2020, 21, 3709.	1.8	9
5	Recent Advances in Machine Learning Based Prediction of RNA-protein Interactions. Protein and Peptide Letters, 2019, 26, 601-619.	0.4	7
6	Significant improvement of miRNA target prediction accuracy in large datasets using meta-strategy based on comprehensive voting and artificial neural networks. BMC Genomics, 2019, 20, 158.	1.2	6
7	How many differentially expressed genes: A perspective from the comparison of genotypic and phenotypic distances. Genomics, 2018, 110, 67-73.	1.3	57
8	Decision-Tree Based Meta-Strategy Improved Accuracy of Disorder Prediction and Identified Novel Disordered Residues Inside Binding Motifs. International Journal of Molecular Sciences, 2018, 19, 3052.	1.8	12
9	Data on evolution of intrinsically disordered regions of the human kinome and contribution of FAK1 IDRs to cytoskeletal remodeling. Data in Brief, 2017, 10, 315-324.	0.5	1
10	Improving prediction accuracy using decision-tree-based meta-strategy and multi-threshold sequential-voting exemplified by miRNA target prediction. Genomics, 2017, 109, 227-232.	1.3	7
11	Consensus datasets of mouse miRNA-mRNA interactions from multiple online resources. Data in Brief, 2017, 14, 143-147.	0.5	2
12	Structural pliability adjacent to the kinase domain highlights contribution of FAK1 IDRs to cytoskeletal remodeling. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2017, 1865, 43-54.	1.1	2
13	Measuring the inter-sample heterogeneity by dynamic PCA biplot. , 2017, , .		1
14	Self-regulation of functional pathways by motifs inside the disordered tails of beta-catenin. BMC Genomics, 2016, 17, 484.	1.2	10
15	Intrinsic Disorder in Transmembrane Proteins: Roles in Signaling and Topology Prediction. PLoS ONE, 2016, 11, e0158594.	1.1	59
16	Integrated Strategy Improves the Prediction Accuracy of miRNA in Large Dataset. PLoS ONE, 2016, 11, e0168392.	1.1	9
17	Unfoldomes and Unfoldomics: Introducing Intrinsically Disordered Proteins. , 2016, , 125-150.		2
18	Superdomains in the protein structure hierarchy: The case of PTP-C2. Protein Science, 2015, 24, 874-882.	3.1	9

Bin Xue

#	Article	IF	CITATIONS
19	Identifying Similar Patterns of Structural Flexibility in Proteins by Disorder Prediction and Dynamic Programming. International Journal of Molecular Sciences, 2015, 16, 13829-13849.	1.8	7
20	Improving MiRNA prediction accuracy by deep learning strategies. , 2015, , .		0
21	Role of structural flexibility in the evolution of emerin. Journal of Theoretical Biology, 2015, 385, 102-111.	0.8	7
22	Intrinsic disorder mediates hepatitis C virus core–host cell protein interactions. Protein Science, 2015, 24, 221-235.	3.1	47
23	Exceptionally abundant exceptions: comprehensive characterization of intrinsic disorder in all domains of life. Cellular and Molecular Life Sciences, 2015, 72, 137-151.	2.4	314
24	Disorder in Milk Proteins: Caseins, Intrinsically Disordered Colloids. Current Protein and Peptide Science, 2015, 16, 228-242.	0.7	35
25	DBC1/CCAR2 and CCAR1 Are Largely Disordered Proteins that Have Evolved from One Common Ancestor. BioMed Research International, 2014, 2014, 1-13.	0.9	24
26	A creature with a hundred waggly tails: intrinsically disordered proteins in the ribosome. Cellular and Molecular Life Sciences, 2014, 71, 1477-1504.	2.4	119
27	A putative role of the Sup35p C-terminal domain in the cytoskeleton organization during yeast mitosis. Molecular BioSystems, 2014, 10, 925-940.	2.9	5
28	Disordered Proteinaceous Machines. Chemical Reviews, 2014, 114, 6806-6843.	23.0	109
29	Structural Disorder in Viral Proteins. Chemical Reviews, 2014, 114, 6880-6911.	23.0	181
30	Contribution of proline to the pre-structuring tendency of transient helical secondary structure elements in intrinsically disordered proteins. Biochimica Et Biophysica Acta - General Subjects, 2014, 1840, 993-1003.	1.1	26
31	The intrinsically disordered structural platform of the plant defence hub protein <scp>RPM</scp> 1â€interacting protein 4 provides insights into its mode of action in the hostâ€pathogen interface and evolution of the nitrateâ€induced domain protein family. FEBS Journal, 2014, 281, 3955-3979.	2.2	50
32	The intrinsic disorder status of the human hepatitis C virus proteome. Molecular BioSystems, 2014, 10, 1345-1363.	2.9	57
33	Presence and utility of intrinsically disordered regions in kinases. Molecular BioSystems, 2014, 10, 2876-2888.	2.9	26
34	Intrinsic Disorder in Proteins Involved in the Innate Antiviral Immunity: Another Flexible Side of a Molecular Arms Race. Journal of Molecular Biology, 2014, 426, 1322-1350.	2.0	37
35	Improving protein order-disorder classification using charge-hydropathy plots. BMC Bioinformatics, 2014, 15, S4.	1.2	63
36	Identifying Novel Cell Cycle Proteins in Apicomplexa Parasites through Co-Expression Decision Analysis. PLoS ONE, 2014, 9, e97625.	1.1	16

Βιν Χυε

#	Article	IF	CITATIONS
37	Disordered Interactome of Human Papillomavirus. Current Pharmaceutical Design, 2014, 20, 1274-1292.	0.9	22
38	Accurate prediction of protein dihedral angles through conditional random field. Frontiers in Biology, 2013, 8, 353-361.	0.7	5
39	Intrinsically disordered regions of p53 family are highly diversified in evolution. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2013, 1834, 725-738.	1.1	68
40	Protein intrinsic disorder in the acetylome of intracellular and extracellular Toxoplasma gondii. Molecular BioSystems, 2013, 9, 645.	2.9	57
41	Utilization of protein intrinsic disorder knowledge in structural proteomics. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2013, 1834, 487-498.	1.1	58
42	Exploring the binding diversity of intrinsically disordered proteins involved in oneâ€ŧoâ€many binding. Protein Science, 2013, 22, 258-273.	3.1	155
43	Stochastic machines as a colocalization mechanism for scaffold protein function. FEBS Letters, 2013, 587, 1587-1591.	1.3	40
44	Distribution and cluster analysis of predicted intrinsically disordered protein Pfam domains. Intrinsically Disordered Proteins, 2013, 1, e25724.	1.9	12
45	Structural characterizations of phosphorylatable residues in transmembrane proteins from <i>Arabidopsis thaliana</i> . Intrinsically Disordered Proteins, 2013, 1, e25713.	1.9	5
46	Intrinsic Disorder in PTEN and its Interactome Confers Structural Plasticity and Functional Versatility. Scientific Reports, 2013, 3, 2035.	1.6	69
47	Ordered Disorder of the Astrocytic Dystrophin-Associated Protein Complex in the Norm and Pathology. PLoS ONE, 2013, 8, e73476.	1.1	12
48	On the intrinsic disorder status of the major players in programmed cell death pathways. F1000Research, 2013, 2, 190.	0.8	20
49	Actinidia DRM1 - An Intrinsically Disordered Protein Whose mRNA Expression Is Inversely Correlated with Spring Budbreak in Kiwifruit. PLoS ONE, 2013, 8, e57354.	1.1	25
50	Malleable ribonucleoprotein machine: protein intrinsic disorder in the <i>Saccharomyces cerevisiae</i> spliceosome. PeerJ, 2013, 1, e2.	0.9	32
51	MoRFpred, a computational tool for sequence-based prediction and characterization of short disorder-to-order transitioning binding regions in proteins. Bioinformatics, 2012, 28, i75-i83.	1.8	311
52	HSF Transcription Factor Family, Heat Shock Response, and Protein Intrinsic Disorder. Current Protein and Peptide Science, 2012, 13, 86-103.	0.7	100
53	Accurate prediction of protein structural classes using functional domains and predicted secondary structure sequences. Journal of Biomolecular Structure and Dynamics, 2012, 29, 1127-1137.	2.0	17
54	D2P2: database of disordered protein predictions. Nucleic Acids Research, 2012, 41, D508-D516.	6.5	570

Βιν Χυε

#	Article	IF	CITATIONS
55	NOT THAT RIGID MIDGETS AND NOT SO FLEXIBLE GIANTS: ON THE ABUNDANCE AND ROLES OF INTRINSIC DISORDER IN SHORT AND LONG PROTEINS. Journal of Biological Systems, 2012, 20, 471-511.	0.5	19
56	Local Flexibility Facilitates Oxidization of Buried Methionine Residues. Protein and Peptide Letters, 2012, 19, 688-697.	0.4	26
57	High-throughput characterization of intrinsic disorder in proteins from the Protein Structure Initiative. Journal of Structural Biology, 2012, 180, 201-215.	1.3	34
58	More than just tails: intrinsic disorder in histone proteins. Molecular BioSystems, 2012, 8, 1886.	2.9	99
59	SPINE-D: Accurate Prediction of Short and Long Disordered Regions by a Single Neural-Network Based Method. Journal of Biomolecular Structure and Dynamics, 2012, 29, 799-813.	2.0	150
60	The Roles of Intrinsic Disorder in Orchestrating the Wnt-Pathway. Journal of Biomolecular Structure and Dynamics, 2012, 29, 843-861.	2.0	44
61	Protein intrinsic disorder and induced pluripotent stem cells. Molecular BioSystems, 2012, 8, 134-150.	2.9	45
62	Orderly order in protein intrinsic disorder distribution: disorder in 3500 proteomes from viruses and the three domains of life. Journal of Biomolecular Structure and Dynamics, 2012, 30, 137-149.	2.0	465
63	Protein intrinsic disorder as a flexible armor and a weapon of HIV-1. Cellular and Molecular Life Sciences, 2012, 69, 1211-1259.	2.4	94
64	Interactions between the C-terminus of Kv1.5 and KvÎ ² regulate pyridine nucleotide-dependent changes in channel gating. Pflugers Archiv European Journal of Physiology, 2012, 463, 799-818.	1.3	37
65	Intrinsic protein disorder and protein-protein interactions. Pacific Symposium on Biocomputing Pacific Symposium on Biocomputing, 2012, , 116-27.	0.7	42
66	Subclassifying disordered proteins by the CH-CDF plot method. Pacific Symposium on Biocomputing Pacific Symposium on Biocomputing, 2012, , 128-39.	0.7	30
67	SUBCLASSIFYING DISORDERED PROTEINS BY THE CH-CDF PLOT METHOD. , 2011, , .		36
68	Intrinsic disorder of the extracellular matrix. Molecular BioSystems, 2011, 7, 3353.	2.9	54
69	Intrinsic disorder in S100 proteins. Molecular BioSystems, 2011, 7, 2164.	2.9	28
70	INTRINSIC PROTEIN DISORDER AND PROTEIN-PROTEIN INTERACTIONS. , 2011, , .		32
71	A functionally required unfoldome from the plant kingdom: intrinsically disordered N-terminal domains of GRAS proteins are involved in molecular recognition during plant development. Plant Molecular Biology, 2011, 77, 205-223.	2.0	135
72	In-silico prediction of disorder content using hybrid sequence representation. BMC Bioinformatics, 2011, 12, 245.	1.2	45

Βιν Χυε

#	Article	IF	CITATIONS
73	Abundance and functional roles of intrinsic disorder in allergenic proteins and allergen representative peptides. Proteins: Structure, Function and Bioinformatics, 2011, 79, 2595-2606.	1.5	6
74	In silico functional profiling of human disease-associated and polymorphic amino acid substitutions. Human Mutation, 2010, 31, 335-346.	1.1	57
75	PONDR-FIT: A meta-predictor of intrinsically disordered amino acids. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2010, 1804, 996-1010.	1.1	993
76	Archaic chaos: intrinsically disordered proteins in Archaea. BMC Systems Biology, 2010, 4, S1.	3.0	111
77	Protein tandem repeats $\hat{a} \in $ the more perfect, the less structured. FEBS Journal, 2010, 277, 2673-2682.	2.2	119
78	SPA: Short peptide analyzer of intrinsic disorder status of short peptides. Genes To Cells, 2010, 15, 635-646.	0.5	8
79	Effect of solvation-related interaction on the low-temperature dynamics of proteins. Physical Review E, 2010, 81, 031917.	0.8	5
80	N-terminal Domains of DELLA Proteins Are Intrinsically Unstructured in the Absence of Interaction with GID1/Gibberellic Acid Receptors. Journal of Biological Chemistry, 2010, 285, 11557-11571.	1.6	67
81	Retro-MoRFs: Identifying Protein Binding Sites by Normal and Reverse Alignment and Intrinsic Disorder Prediction. International Journal of Molecular Sciences, 2010, 11, 3725-3747.	1.8	42
82	Viral Disorder or Disordered Viruses: Do Viral Proteins Possess Unique Features?. Protein and Peptide Letters, 2010, 17, 932-951.	0.4	109
83	Protein tandem repeats - the more perfect, the less structured. FEBS Journal, 2010, 277, 2673-2682.	2.2	85
84	Unfoldomics of human diseases: linking protein intrinsic disorder with diseases. BMC Genomics, 2009, 10, S7.	1.2	236
85	CDF it all: Consensus prediction of intrinsically disordered proteins based on various cumulative distribution functions. FEBS Letters, 2009, 583, 1469-1474.	1.3	123
86	Improving the prediction accuracy of residue solvent accessibility and realâ€value backbone torsion angles of proteins by guidedâ€learning through a twoâ€layer neural network. Proteins: Structure, Function and Bioinformatics, 2009, 74, 847-856.	1.5	125
87	Predicting residue–residue contact maps by a twoâ€layer, integrated neuralâ€network method. Proteins: Structure, Function and Bioinformatics, 2009, 76, 176-183.	1.5	38
88	Analysis of structured and intrinsically disordered regions of transmembrane proteins. Molecular BioSystems, 2009, 5, 1688.	2.9	59
89	Predicting intrinsic disorder in proteins: an overview. Cell Research, 2009, 19, 929-949.	5.7	389
90	Realâ€value prediction of backbone torsion angles. Proteins: Structure, Function and Bioinformatics, 2008. 72. 427-433.	1.5	66

Bin Xue

#	Article	IF	CITATIONS
91	Effect of Methionine Oxidation on the Structural Properties, Conformational Stability, and Aggregation of Immunoglobulin Light Chain LEN. Biochemistry, 2008, 47, 8665-8677.	1.2	34
92	DDOMAIN: Dividing structures into domains using a normalized domain-domain interaction profile. Protein Science, 2007, 16, 947-955.	3.1	67
93	The orientational preferences of backbones of proteins. Science Bulletin, 2006, 51, 2559-2565.	1.7	0
94	Permeation of particle through a four-helix-bundle model channel. Journal of Chemical Physics, 2005, 122, 104703.	1.2	0
95	Influence of external vibration on tether chain in ligand-receptor binding. Journal of Chemical Physics, 2005, 122, 194912.	1.2	10
96	THE "FOLDING" BEHAVIORS OF HOMOPOLYMERS WITH ONE END FIXED. International Journal of Modern Physics B, 2004, 18, 2123-2139.	1.0	5
97	Collapse of homopolymer chains with two fixed terminals. Journal of Chemical Physics, 2003, 119, 7534-7542.	1.2	7