
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5431694/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Design and synthesis of Janus micro- and nanoparticles. Journal of Materials Chemistry, 2005, 15, 3745.	6.7	651
2	Synthesis of Colloidal Crystals of Controllable Thickness through the Langmuirâ^'Blodgett Technique. Chemistry of Materials, 2003, 15, 598-605.	3.2	269
3	From colloidal particles to photonic crystals: advances in self-assembly and their emerging applications. Chemical Society Reviews, 2021, 50, 5898-5951.	18.7	232
4	Syntheses of Raspberrylike Silica/Polystyrene Materials. Chemistry of Materials, 2002, 14, 2354-2359.	3.2	208
5	Design and elaboration of colloidal molecules: an overview. Chemical Society Reviews, 2011, 40, 941.	18.7	192
6	Synthesis of Daisy-Shaped and Multipod-like Silica/Polystyrene Nanocomposites. Nano Letters, 2004, 4, 1677-1682.	4.5	178
7	Tailored Mesostructuring and Biofunctionalization of Gold for Increased Electroactivity. Angewandte Chemie - International Edition, 2006, 45, 1317-1321.	7.2	165
8	Pickering emulsions with stimulable particles: from highly- to weakly-covered interfaces. Physical Chemistry Chemical Physics, 2007, 9, 6455.	1.3	150
9	Hybrid Dissymmetrical Colloidal Particles. Chemistry of Materials, 2005, 17, 3338-3344.	3.2	149
10	Production of large quantities of "Janus―nanoparticles using wax-in-water emulsions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2009, 332, 57-62.	2.3	145
11	Macroporous Ultramicroelectrodes for Improved Electroanalytical Measurements. Analytical Chemistry, 2007, 79, 533-539.	3.2	143
12	Synthesis of non-spherical gold nanoparticles. Gold Bulletin, 2008, 41, 195-207.	3.2	125
13	Colloidal molecules and patchy particles: complementary concepts, synthesis and self-assembly. Chemical Society Reviews, 2020, 49, 1955-1976.	18.7	118
14	Inorganic Molybdenum Octahedral Nanosized Cluster Units, Versatile Functional Building Block for Nanoarchitectonics. Journal of Inorganic and Organometallic Polymers and Materials, 2015, 25, 189-204.	1.9	102
15	Towards large amounts of Janus nanoparticles through a protection–deprotection route. Chemical Communications, 2005, , 5542.	2.2	94
16	Synthesis of hybrid colloidal particles: From snowman-like to raspberry-like morphologies. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2006, 284-285, 78-83.	2.3	94
17	Synthesis and assembly of patchy particles: Recent progress and future prospects. Current Opinion in Colloid and Interface Science, 2017, 30, 45-53.	3.4	92
18	Inverse Opals of Molecularly Imprinted Hydrogels for the Detection of Bisphenol A and pH Sensing. Langmuir, 2012, 28, 1005-1012.	1.6	91

#	Article	IF	CITATIONS
19	Three-dimensional colloidal crystals with a well-defined architecture. Journal of Colloid and Interface Science, 2004, 279, 471-478.	5.0	89
20	A Chemical Synthetic Route towards "Colloidal Moleculesâ€: Angewandte Chemie - International Edition, 2009, 48, 361-365.	7.2	87
21	Multiresponsive Hybrid Microgels and Hollow Capsules with a Layered Structure. Langmuir, 2009, 25, 4659-4667.	1.6	79
22	Patchy colloidal particles for programmed self-assembly. Comptes Rendus Chimie, 2016, 19, 173-182.	0.2	79
23	Polyoxometalate Monolayers in Langmuir-Blodgett Films. Chemistry - A European Journal, 2005, 11, 3979-3987.	1.7	78
24	Bio-inspired synthetic pathways and beyond: integrative chemistry. New Journal of Chemistry, 2008, 32, 1284.	1.4	76
25	Organization of Microgels at the Air–Water Interface under Compression: Role of Electrostatics and Cross-Linking Density. Langmuir, 2017, 33, 7968-7981.	1.6	75
26	High-yield preparation of polystyrene/silica clusters of controlled morphology. Polymer Chemistry, 2012, 3, 1130.	1.9	72
27	Raman Enhancement of Azobenzene Monolayers on Substrates Prepared by Langmuirâ^'Blodgett Deposition and Electron-Beam Lithography Techniques. Langmuir, 2008, 24, 11313-11321.	1.6	71
28	Tailoring planar defect in three-dimensional colloidal crystals. Chemical Physics Letters, 2006, 422, 251-255.	1.2	68
29	Photochemical Generation of Gold Nanoparticles in Langmuirâ^'Blodgett Films. Langmuir, 1998, 14, 708-713.	1.6	66
30	Synthesis and Site‧pecific Functionalization of Tetravalent, Hexavalent, and Dodecavalent Silica Particles. Angewandte Chemie - International Edition, 2013, 52, 11068-11072.	7.2	64
31	Raspberry-like Gold Microspheres: Preparation and Electrochemical Characterization. Advanced Functional Materials, 2007, 17, 618-622.	7.8	61
32	Improved enzyme immobilization for enhanced bioelectrocatalytic activity of porous electrodes. Electrochemistry Communications, 2007, 9, 2121-2127.	2.3	60
33	Triazole-Based Magnetic Langmuirâ^'Blodgett Films:  Paramagnetic to Spin-Crossover Behavior. Journal of Physical Chemistry B, 2004, 108, 15110-15116.	1.2	55
34	Introduction of a planar defect in a molecularly imprinted photonic crystal sensor for the detection of bisphenol A. Journal of Colloid and Interface Science, 2011, 364, 18-23.	5.0	55
35	Colloidal photonic crystals obtained by the Langmuir–Blodgett technique. Applied Surface Science, 2005, 246, 409-414.	3.1	52
36	Photonic crystal pH sensor containing a planar defect for fast and enhanced response. Journal of Materials Chemistry, 2011, 21, 13052.	6.7	52

SERGE RAVAINE

#	Article	IF	CITATIONS
37	All-optical ultrafast spectroscopy of a single nanoparticle-substrate contact. Physical Review B, 2012, 86, .	1.1	52
38	Charge Detection Mass Spectrometry for the Characterization of Mass and Surface Area of Composite Nanoparticles. Journal of Physical Chemistry C, 2015, 119, 10844-10849.	1.5	51
39	Engineering of Complex Macroporous Materials Through Controlled Electrodeposition in Colloidal Superstructures. Advanced Functional Materials, 2012, 22, 538-545.	7.8	50
40	Nucleation of Polystyrene Latex Particles in the Presence of <i>γ</i> -Methacryloxypropyltrimethoxysilane: Functionalized Silica Particles. Journal of Nanoscience and Nanotechnology, 2006, 6, 432-444.	0.9	48
41	Synthesis, Physical Characterizations, and Langmuir Films of New Methanofullerenes. The Journal of Physical Chemistry, 1995, 99, 9551-9557.	2.9	46
42	Electrochemical and Photoelectrochemical Properties of New Hybrid Langmuirâ´'Blodgett Films Containing Prussian Blue and a Tris(Bipyridine) Ruthenium Derivative. Journal of Physical Chemistry B, 2000, 104, 9487-9490.	1.2	46
43	Design of Catalytically Active Cylindrical and Macroporous Gold Microelectrodes. Advanced Functional Materials, 2011, 21, 691-698.	7.8	46
44	Electrochemistry of Langmuirâ^'Blodgett Films Based on Prussian Blue. Langmuir, 1998, 14, 6347-6349.	1.6	45
45	Layer-by-layer self-assembly of Prussian blue colloids. Journal of Colloid and Interface Science, 2003, 261, 330-335.	5.0	45
46	Gain induced optical transparency in metamaterials. Applied Physics Letters, 2011, 98, .	1.5	45
47	Hybrid Organicâ^'Inorganic Langmuirâ^'Blodgett Films Starting from Colloidal Prussian Blue Solution. Langmuir, 2003, 19, 4688-4693.	1.6	44
48	Dissymmetric silica nanospheres: a first step to difunctionalized nanomaterials. Journal of Materials Chemistry, 2000, 10, 253-254.	6.7	43
49	Patterning the Surface of Colloidal Microspheres and Fabrication of Nonspherical Particles. Angewandte Chemie - International Edition, 2008, 47, 4725-4728.	7.2	43
50	Three-Dimensional Opal-Like Silica Foams. Langmuir, 2006, 22, 5469-5475.	1.6	42
51	Sub-micrometer silica spheres dissymmetrically decorated with gold nanoclusters. Materials Letters, 2001, 51, 478-484.	1.3	40
52	Efficient Synthesis of Snowman- and Dumbbell-like Silica/Polymer Anisotropic Heterodimers through Emulsion Polymerization Using a Surface-Anchored Cationic Initiator. Macromolecules, 2012, 45, 7009-7018.	2.2	38
53	Nonisotropic Selfâ€Assembly of Nanoparticles: From Compact Packing to Functional Aggregates. Advanced Materials, 2018, 30, e1706558.	11.1	38
54	Formation, Structure, and Morphology of Triazole-Based Langmuirâ^'Blodgett Films. Langmuir, 2007, 23, 3110-3117.	1.6	36

#	Article	IF	CITATIONS
55	Robust raspberry-like metallo-dielectric nanoclusters of critical sizes as SERS substrates. Nanoscale, 2017, 9, 5725-5736.	2.8	36
56	Tuning Interior Nanogaps of Double-shelled Au/Ag Nanoboxes for Surface-Enhanced Raman Scattering. Scientific Reports, 2015, 5, 8382.	1.6	35
57	Bottom-Up Assembly and Applications of Photonic Materials. Crystals, 2016, 6, 54.	1.0	35
58	Surface Assisted Nucleation and Growth of Polymer Latexes on Organically-Modified Inorganic Particles. Macromolecular Symposia, 2005, 229, 32-46.	0.4	34
59	Effects of the Position of a Chemically or Size-Induced Planar Defect on the Optical Properties of Colloidal Crystals. Journal of Physical Chemistry C, 2009, 113, 14487-14492.	1.5	34
60	Fine tuning of emission through the engineering of colloidal crystals. Physical Chemistry Chemical Physics, 2010, 12, 11993.	1.3	34
61	Engineered Multilayer Colloidal Crystals with Tunable Optical Properties. Chemistry of Materials, 2005, 17, 4244-4249.	3.2	33
62	An Easy Way to Control the Morphology of Colloidal Polymer-Oxide Supraparticles through Seeded Dispersion Polymerization. Langmuir, 2010, 26, 6086-6090.	1.6	32
63	Synthesis of multivalent silica nanoparticles combining both enthalpic and entropic patchiness. Faraday Discussions, 2015, 181, 139-146.	1.6	32
64	Voltammetric and Impedance Analysis of Dimethyldioctadecylammonium/Prussian Blue Langmuirâ^'Blodgett Films on ITO Electrodes. Journal of Physical Chemistry B, 1999, 103, 9712-9716.	1.2	31
65	Ring-opening metathesis polymerization on well defined silica nanoparticles leading to hybrid core–shell particles. Journal of Materials Chemistry, 2003, 13, 1920-1925.	6.7	31
66	Designing Organic/Inorganic Colloids by Heterophase Polymerization. Macromolecular Symposia, 2007, 248, 213-226.	0.4	30
67	Double strong exciton-plasmon coupling in gold nanoshells infiltrated with fluorophores. Applied Physics Letters, 2014, 104, 103103.	1.5	30
68	Multipod-like silica/polystyrene clusters. Nanoscale, 2016, 8, 5454-5469.	2.8	30
69	Periodic Distribution of Planar Defects in Colloidal Photonic Crystals. Advanced Materials, 2008, 20, 584-587.	11.1	29
70	New insights into the nucleation and growth of PS nodules on silicananoparticles by 3D cryo-electron tomography. Soft Matter, 2008, 4, 311-315.	1.2	29
71	Optoacoustic response of a single submicronic gold particle revealed by the picosecond ultrasonics technique. Applied Physics Letters, 2009, 95, .	1.5	29
72	Gain functionalized core–shell nanoparticles: the way to selectively compensate absorptive losses. Journal of Materials Chemistry, 2012, 22, 8846.	6.7	28

#	Article	IF	CITATIONS
73	Quaternary Ammonium Groups Exposed at the Surface of Silica Nanoparticles Suitable for DNA Complexation in the Presence of Cationic Lipids. Journal of Physical Chemistry B, 2015, 119, 6401-6411.	1.2	28
74	New Insights into the Side-Face Structure, Growth Aspects, and Reactivity of Ag _{<i>n</i>} Nanoprisms. Langmuir, 2014, 30, 1424-1434.	1.6	26
75	Colloidal Molecules from Valenceâ€Endowed Nanoparticles by Covalent Chemistry. Angewandte Chemie - International Edition, 2018, 57, 15754-15757.	7.2	26
76	Bulk Photodriven CO ₂ Conversion through TiO ₂ @Si(HIPE) Monolithic Macrocellular Foams. Advanced Functional Materials, 2019, 29, 1807767.	7.8	26
77	Clustering of asymmetric dumbbell-shaped silica/polystyrene nanoparticles by solvent-induced self-assembly. Journal of Colloid and Interface Science, 2020, 560, 639-648.	5.0	25
78	Langmuir–Blodgett films of micron-sized organic and inorganic colloids. Physical Chemistry Chemical Physics, 2007, 9, 6385.	1.3	24
79	Synthesis of Size-Monodisperse Spherical Ag@SiO2 Nanoparticles and 3-D Assembly Assisted by Microfluidics. Langmuir, 2013, 29, 1790-1795.	1.6	24
80	The Langmuir–Blodgett technique: A powerful tool to elaborate multilayer colloidal crystals. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2005, 270-271, 148-152.	2.3	23
81	About the suitability of the seeded-dispersion polymerization technique for preparing micron-sized silica-polystyrene clusters. Journal of Materials Chemistry, 2010, 20, 9392.	6.7	23
82	Monolayers and Langmuir-Blodgett films of a semifluorinated tetrathiafulvalene derivative. Thin Solid Films, 1994, 243, 575-580.	0.8	21
83	High optical magnetism of dodecahedral plasmonic meta-atoms. Nanophotonics, 2019, 8, 549-558.	2.9	21
84	CoFe ₂ O ₄ â^'TiO ₂ and CoFe ₂ O ₄ â^'ZnO Thin Film Nanostructures Elaborated from Colloidal Chemistry and Atomic Layer Deposition. Langmuir, 2010, 26, 18400-18407.	1.6	19
85	Electrodeposited Negative Index Metamaterials with Visible and Near Infrared Response. Advanced Optical Materials, 2020, 8, 2000865.	3.6	19
86	Langmuir and Langmuir-Blodgett films of C60 derivatives. Thin Solid Films, 1996, 284-285, 76-79.	0.8	18
87	Colloidal Crystals as Templates for Macroporous Carbon Electrodes of Controlled Thickness. Electroanalysis, 2007, 19, 379-384.	1.5	17
88	Bottomâ€up Generation of Miniaturized Coaxial Double Electrodes with Tunable Porosity. Advanced Materials Interfaces, 2015, 2, 1500192.	1.9	17
89	Surface-enhanced spectroscopy on plasmonic oligomers assembled by AFM nanoxerography. Nanoscale, 2015, 7, 2009-2022.	2.8	17
90	All-optical in-depth detection of the acoustic wave emitted by a single gold nanorod. Physical Review B, 2018, 97, .	1.1	17

#	Article	IF	CITATIONS
91	Synthesis of Colloidal Molecules: Recent Advances and Perspectives. Chemistry - an Asian Journal, 2019, 14, 3232-3239.	1.7	17
92	Synthesis of new donor-acceptor systems through the association of a tetrathiafulvalene core and fullerene units. Synthetic Metals, 1997, 87, 93-95.	2.1	16
93	Templated growth of gold satellites on dimpled silica cores. Faraday Discussions, 2016, 191, 105-116.	1.6	16
94	Colocalized dark-field scattering, atomic force and surface-enhanced Raman scattering microscopic imaging of single gold nanoparticles. Journal of Optics (United Kingdom), 2015, 17, 114006.	1.0	15
95	Tunable index metamaterials made by bottom-up approaches. Nanoscale Advances, 2019, 1, 1070-1076.	2.2	14
96	Spontaneous oscillations in gold electrodeposition. Electrochemistry Communications, 2002, 4, 629-632.	2.3	13
97	Elaboration of photonic crystal heterostructures by the Langmuir–Blodgett method. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2006, 284-285, 229-233.	2.3	13
98	Spheres Growing on a Sphere: A Model to Predict the Morphology Yields of Colloidal Molecules Obtained through a Heterogeneous Nucleation Route. Langmuir, 2012, 28, 11575-11583.	1.6	13
99	Sandwich-structured Fe ₂ O ₃ @SiO ₂ @Au nanoparticles with magnetoplasmonic responses. Journal of Materials Chemistry C, 2015, 3, 11645-11652.	2.7	13
100	Acoustic Vibrations of Core–Shell Nanospheres: Probing the Mechanical Contact at the Metal–Dielectric Interface. Journal of Physical Chemistry C, 2018, 122, 9127-9133.	1.5	13
101	Langmuir and Langmuir-Blodgett films of a perfluoro C60 derivative. Chemical Physics Letters, 1995, 242, 478-482.	1.2	12
102	Organic/inorganic Langmuir–Blodgett films based on known layered solids: divalent and trivalent metal phosphonates. Thin Solid Films, 1998, 327-329, 331-335.	0.8	12
103	Electrodeposition of two-dimensional silver films under dihexadecyl phosphate monolayers. Materials Science and Engineering C, 1999, 8-9, 437-444.	3.8	12
104	Carbon Membranes of Controlled Thickness from Colloidal Crystals. Advanced Materials, 2006, 18, 1705-1708.	11.1	12
105	Building planar defects into colloidal crystals using particles of different chemical nature. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2009, 343, 8-11.	2.3	12
106	Planar submicronic silica–polystyrene particles obtained by substrate-directed shaping. Journal of Materials Chemistry, 2009, 19, 4225.	6.7	12
107	Multicomponent macroporous materials with a controlled architecture. Journal of Materials Chemistry, 2009, 19, 409-414.	6.7	12
108	Synthesis of nanoscaled poly(styrene-co-n-butyl acrylate)/silica particles with dumbbell- and snowman-like morphologies by emulsion polymerization. Polymer Chemistry, 2014, 5, 5609-5616.	1.9	12

#	Article	IF	CITATIONS
109	Battling absorptive losses by plasmon–exciton coupling in multimeric nanostructures. RSC Advances, 2015, 5, 53245-53254.	1.7	12
110	Molecularly imprinted hydrogels from colloidal crystals for the detection of progesterone. Polymer International, 2015, 64, 773-779.	1.6	12
111	Towards a one-step method for preparing silica/polymer heterodimers and dimpled polymer particles. Polymer, 2015, 70, 118-126.	1.8	12
112	Remotein vivoimaging of human skin corneocytes by means of an optical fiber bundle. Review of Scientific Instruments, 2007, 78, 053709.	0.6	11
113	Quasi-omnidirectional total light absorption in nanostructured gold surfaces. Optical Materials Express, 2014, 4, 1236.	1.6	11
114	Plasmonic metamaterials for ultra-sensitive sensing: topological darkness. Rendiconti Lincei, 2015, 26, 175-182.	1.0	11
115	Miniaturized Electrochemical Device from Assembled Cylindrical Macroporous Gold Electrodes. ChemElectroChem, 2016, 3, 2031-2035.	1.7	11
116	Morphological Design of Gold Nanopillar Arrays and Their Optical Properties. Journal of Physical Chemistry C, 2016, 120, 1178-1185.	1.5	11
117	Colloidal Alchemy: Conversion of Polystyrene Nanoclusters into Gold. ChemNanoMat, 2017, 3, 160-163.	1.5	11
118	Fast and Ample Light Controlled Actuation of Monodisperse Allâ€DNA Microgels. Advanced Functional Materials, 2021, 31, 2010396.	7.8	11
119	Colloidal chemistry with patchy silica nanoparticles. Beilstein Journal of Nanotechnology, 2018, 9, 2989-2998.	1.5	10
120	Self-assembly of colloidal polymers from two-patch silica nanoparticles. Nano Research, 2020, 13, 3371-3376.	5.8	10
121	Electroless Deposition of Gold Films under Organized Monolayers. Journal of the Electrochemical Society, 2001, 148, C65.	1.3	9
122	Wavelength-dependent emission enhancement through the design of active plasmonic nanoantennas. Optics Express, 2011, 19, 17697.	1.7	9
123	Efficiency enhancement in solid state dye sensitized solar cells by including inverse opals with controlled layer thicknesses. Photonics and Nanostructures - Fundamentals and Applications, 2016, 21, 13-18.	1.0	9
124	Toward Huygens' Sources with Dodecahedral Plasmonic Clusters. Nano Letters, 2021, 21, 2046-2052.	4.5	9
125	Langmuir-Blodgett Films Based on Prussian Blue Derivatives: towards New Hybrid Magnetic Materials. Molecular Crystals and Liquid Crystals, 1999, 335, 349-358.	0.3	8
126	Inhibition and exaltation of emission in layer-controlled colloidal photonic architectures. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2011, 373, 1-5.	2.3	8

#	Article	IF	CITATIONS
127	Energy Transfer and Interference by Collective Electromagnetic Coupling. Nano Letters, 2019, 19, 5790-5795.	4.5	8
128	Versatile template-directed synthesis of gold nanocages with a predefined number of windows. Nanoscale Horizons, 2021, 6, 311-318.	4.1	8
129	Linear Assembly of Two-Patch Silica Nanoparticles and Control of Chain Length by Coassembly with Colloidal Chain Stoppers. ACS Macro Letters, 2022, 11, 156-160.	2.3	8
130	Synthesis of HCN-like poly(methyl methacrylate)/polystyrene/silica colloidal molecules. Polymer Chemistry, 2012, 3, 3232.	1.9	7
131	Hierarchical Macroâ€mesoporous Pt Deposits on Gold Microwires for Efficient Methanol Oxidation. Electroanalysis, 2013, 25, 888-894.	1.5	7
132	One-pot synthesis of gold nanodimers and their use as surface-enhanced Raman scattering tags. New Journal of Chemistry, 2016, 40, 7299-7302.	1.4	7
133	Nonaqueous sol–gel chemistry applied to atomic layer deposition: tuning of photonic band gap properties of silica opals. Nanoscale, 2010, 2, 786.	2.8	6
134	Nanostructured gold films exhibiting almost complete absorption of light at visible wavelengths. Frontiers of Chemical Science and Engineering, 2018, 12, 247-251.	2.3	6
135	Electrochemical Codeposition of Multilamellar Vesicles in an Inorganic Matrix. Journal of the Electrochemical Society, 2000, 147, 575.	1.3	5
136	Electroless formation of gold deposits under positively charged surfactant monolayers. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2002, 198-200, 401-407.	2.3	5
137	Polymeric Membranes from Colloidal Templates with Tunable Morphology. Macromolecular Reaction Engineering, 2010, 4, 445-452.	0.9	5
138	One-pot easily-processed TiO2 macroporous photoanodes (Ti-HIPE) for dye-sensitized solar cells. Solid State Sciences, 2014, 28, 81-89.	1.5	5
139	Colloidal Molecules from Valenceâ€Endowed Nanoparticles by Covalent Chemistry. Angewandte Chemie, 2018, 130, 15980-15983.	1.6	5
140	Langmuir and Langmuir—Blodgett films of mesogenic methanofullerenes. Synthetic Metals, 1996, 81, 271-275.	2.1	4
141	Ramified gold deposits at the gasâ^£liquid interface. Journal of Electroanalytical Chemistry, 2003, 544, 129-135.	1.9	4
142	Ultrafast microscopy of the vibrational landscape of a single nanoparticle. Applied Physics Letters, 2019, 114, 091904.	1.5	4
143	Methanofullerenes with mesogenic groups: Bulk properties and Langmuir films. Journal of Physics and Chemistry of Solids, 1997, 58, 1753-1756.	1.9	3
144	Magnetic Langmuir-Blodgett Films. Molecular Crystals and Liquid Crystals, 1998, 322, 91-98.	0.3	3

#	Article	IF	CITATIONS
145	Morphological Control of Gold Electrodeposits Grown at the Gas-Liquid Interface. Journal of the Electrochemical Society, 2003, 150, C175.	1.3	3
146	Outstanding Stability of Poorly-protected Pickering Emulsions. , 2010, , 13-18.		3
147	Broadband spontaneous emission rate enhancement through the design of plasmonic nanoantennas. Optical Materials Express, 2012, 2, 566.	1.6	3
148	Synthesis of hematite/silica/polymer composite colloids with a tunable morphology. Colloid and Polymer Science, 2013, 291, 187-192.	1.0	3
149	Experimental evidence of exciton-plasmon coupling in densely packed dye doped core-shell nanoparticles obtained via microfluidic technique. Journal of Applied Physics, 2014, 116, .	1.1	3
150	Regioselective Coating of Tetrapod-like Clusters with Silica. Molecular Crystals and Liquid Crystals, 2014, 604, 27-32.	0.4	3
151	Fabrication of broadband omnidirectional non-reflective gold surfaces by electrodeposition. International Journal of Higher Education Management, 2015, 1, 11-16.	1.0	3
152	Synthesis of tetrahedral patchy nanoparticles with controlled patch size. Journal of Nanoparticle Research, 2020, 22, 1.	0.8	3
153	Polyhedral plasmonic nanoclusters through multi-step colloidal chemistry. Materials Horizons, 2021, 8, 565-570.	6.4	3
154	Templated Synthesis and Assembly of Two-, Three- and Six-Patch Silica Nanoparticles with a Controlled Patch-to-Particle Size Ratio. Molecules, 2021, 26, 4736.	1.7	3
155	Solvent-Induced Assembly of One-Patch Silica Nanoparticles into Robust Clusters, Wormlike Chains and Bilayers. Nanomaterials, 2022, 12, 100.	1.9	3
156	Sinterability, Mechanical, and Electrical Properties of Al2O3/8YSZ Nanocomposites Prepared by Ultrasonic Spray Pyrolysis. Journal of Nanoscience and Nanotechnology, 2006, 6, 3404-3407.	0.9	2
157	Quasi-total omnidirectional light absorption in nanostructured gold films. Applied Physics A: Materials Science and Processing, 2014, 117, 471-475.	1.1	2
158	Regioselective functionalization of dimpled silica particles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 510, 239-244.	2.3	2
159	Spectral dependence of plasmon-enhanced fluorescence in a hollow nanotriangle assembled by DNA origami: towards plasmon assisted energy transfer. Nanoscale, 2018, 10, 16568-16573.	2.8	2
160	From Raspberry-like to Dumbbell-like Hybrid Colloids through Surface-assisted Nucleation and Growth of Polystyrene Nodules onto Macromonomer-modified Silica Nanoparticles. Materials Research Society Symposia Proceedings, 2004, 847, 292.	0.1	1
161	Recent advances in the synthesis of anisotropic particles. , 2018, , 1-35.		1
162	Silica/polystyrene bipod-like submicron colloids synthesized by seed-growth dispersion polymerisation as precursors for two-patch silica particles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 648, 129344.	2.3	1

#	Article	IF	CITATIONS
163	Spontaneous Oscillations During The Electrodeposition of Gold Thin Films. Materials Research Society Symposia Proceedings, 2002, 749, 1.	0.1	0
164	Control of the morphology of gold deposits grown at the gas/liquid interface. Materials Science and Engineering C, 2002, 22, 209-212.	3.8	0
165	Synthesis of Hybrid Colloids Through the Growth of Polystyrene Latex Particles onto Methacryloxy methyl triethoxysilane - Functionalized Silica Particles. Materials Research Society Symposia Proceedings, 2005, 901, 1.	0.1	0
166	Engineering Three Dimensional Nanotextured Opal-Like Silica Foams. Materials Research Society Symposia Proceedings, 2005, 901, 1.	0.1	0
167	Engineered Three-dimensional Colloidal Crystals Containing a Planar Defect. Materials Research Society Symposia Proceedings, 2005, 901, 1.	0.1	0
168	Engineered defects in three-dimensional colloidal crystals. , 2006, , .		0
169	Self-Assembly of Polyhedral Hybrid Colloidal Particles. Materials Research Society Symposia Proceedings, 2008, 1135, 60801.	0.1	Ο
170	Single-Crystalline Gold Nanoplates from a Commercial Gold Plating Solution. Journal of Nanoscience and Nanotechnology, 2009, 9, 2045-2050.	0.9	0
171	Photo-acoustic response of a single 430 nm gold particle: Semi-analytical model and picosecond ultrasonics measurements. Journal of Physics: Conference Series, 2010, 214, 012046.	0.3	Ο
172	Elaboración de Membranas Poliméricas Porosas a partir de Cristales Coloidales. Informacion Tecnologica (discontinued), 2010, 21, .	0.1	0
173	Optical cavity modes in semicurved Fabry–Pérot resonators. Journal of Applied Physics, 2010, 108, 086109.	1.1	0
174	Time-resolved probing of the acoustic field radiated by a single submicron gold particle. , 2011, , .		0
175	Optical properties of raspberry-like SiO <inf>2</inf> @M <inf>n</inf> nanoclusters. , 2013, , .		0
176	GHz dynamics of a single nanoparticle-substrate contact probed by femtosecond intrinsic common-path interferometry. , 2013, , .		0
177	Simulation of negative refraction condition for fishnet structures based on self-assembled nanoparticles templates. , 2015, , .		0
178	10.1063/1.5085157.1., 2019, , .		0
179	Dissymmetrical gold tagging on spherical silica nanoparticles. , 0, , 240-244.		О