
Joana Mesquita-Guimarães

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5431195/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Structural Performance of Dense Alumina-Zirconia Ceramics: An Overview of Conventional versus Additive Manufacturing. , 2022, 8, .		0
2	Microstructural Modelling of the Thermoelastic Properties of Dense ZTA Ceramics. , 2022, 8, .		0
3	In-vitro mechanical and biological evaluation of novel zirconia reinforced bioglass scaffolds for bone repair. Journal of the Mechanical Behavior of Biomedical Materials, 2021, 114, 104164.	1.5	22
4	On the production of novel zirconia-reinforced bioactive glassÂporous structures for bone repair. Journal of Materials Science, 2021, 56, 11682-11697.	1.7	1
5	Micro-CT based finite element modelling and experimental characterization of the compressive mechanical properties of 3-D zirconia scaffolds for bone tissue engineering. Journal of the Mechanical Behavior of Biomedical Materials, 2020, 102, 103516.	1.5	31
6	Cell adhesion evaluation of laser-sintered HAp and 45S5 bioactive glass coatings on micro-textured zirconia surfaces using MC3T3-E1 osteoblast-like cells. Materials Science and Engineering C, 2020, 109, 110492.	3.8	29
7	Influence of ns-Nd:YAG laser surface treatment on the tensile bond strength of zirconia to resin-matrix cements. Ceramics International, 2020, 46, 27822-27831.	2.3	11
8	Evaluation of in vitro properties of 3D micro-macro porous zirconia scaffolds coated with 58S bioactive glass using MG-63 osteoblast-like cells. Journal of the European Ceramic Society, 2019, 39, 2545-2558.	2.8	27
9	Mechanical properties of zirconia periodic open cellular structures. Ceramics International, 2019, 45, 15799-15806.	2.3	10
10	Y-TZP/porcelain graded dental restorations design for improved damping behavior – A study on damping capacity and dynamic Young's modulus. Journal of the Mechanical Behavior of Biomedical Materials, 2019, 96, 219-226.	1.5	5
11	Production and characterization of zirconia structures with a porous surface. Materials Science and Engineering C, 2019, 101, 264-273.	3.8	9
12	Shear bond strength of PEEK and PEEK-30GF cemented to zirconia or titanium substrates. Journal of Adhesion Science and Technology, 2019, 33, 1090-1101.	1.4	5
13	Development of novel zirconia implant's materials gradated design with improved bioactive surface. Journal of the Mechanical Behavior of Biomedical Materials, 2019, 94, 110-125.	1.5	17
14	Sliding behavior of zirconia porous implant surfaces against bone. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2019, 107, 1113-1121.	1.6	6
15	The Potential Use of Oyster Shell Waste in New Value-Added By-Product. Resources, 2019, 8, 13.	1.6	104
16	Bond strength enhancement of zirconia-porcelain interfaces via Nd:YAG laser surface structuring. Journal of the Mechanical Behavior of Biomedical Materials, 2018, 81, 161-167.	1.5	22
17	Wear behaviour of tetragonal zirconia polycrystal with a porous surface. International Journal of Refractory Metals and Hard Materials, 2018, 75, 85-93.	1.7	10
18	Optimized route for the production of zirconia structures with controlled surface porosity for biomedical applications. Ceramics International, 2018, 44, 12496-12503.	2.3	12

#	Article	IF	CITATIONS
19	Mesoporous bioactive glass embedding propolis and cranberry antibiofilm compounds. Journal of Biomedical Materials Research - Part A, 2018, 106, 1614-1625.	2.1	26
20	Influence of laser structuring of PEEK, PEEK-GF30 and PEEK-CF30 surfaces on the shear bond strength to a resin cement. Journal of the Mechanical Behavior of Biomedical Materials, 2018, 84, 225-234.	1.5	31
21	Bioactive glass coatings. , 2018, , 103-118.		8
22	Nanostructured biocompatible ceramics and glass-ceramics. , 2018, , 97-118.		2
23	Tribological characterization of bioactive zirconia composite layers on zirconia structures. Ceramics International, 2018, 44, 18663-18671.	2.3	9
24	Inhibition of multiâ€species oral biofilm by bromide doped bioactive glass. Journal of Biomedical Materials Research - Part A, 2017, 105, 1994-2003.	2.1	22
25	Thermal residual stresses in bilayered, trilayered and graded dental ceramics. Ceramics International, 2017, 43, 3670-3678.	2.3	21
26	New perspectives for recycling dental zirconia waste resulting from CAD/CAM manufacturing process. Journal of Cleaner Production, 2017, 152, 454-463.	4.6	32
27	Processing and strengthening of 58S bioactive glassâ€infiltrated titania scaffolds. Journal of Biomedical Materials Research - Part A, 2017, 105, 590-600.	2.1	17
28	Antiâ€biofilm properties of bioactive glasses embedding organic active compounds. Journal of Biomedical Materials Research - Part A, 2017, 105, 672-679.	2.1	35
29	Influence of interlayer design on residual thermal stresses in trilayered and graded all-ceramic restorations. Materials Science and Engineering C, 2017, 71, 1037-1045.	3.8	18
30	The bending stress distribution in bilayered and graded zirconia-based dental ceramics. Ceramics International, 2016, 42, 11025-11031.	2.3	36
31	Effect of aging on the onset of cracks due to redistribution of residual stresses in functionally graded environmental barrier coatings of mullite/ZrO2. Composites Part B: Engineering, 2014, 61, 199-205.	5.9	14
32	Mullite–YSZ multilayered environmental barrier coatings tested in cycling conditions under water vapor atmosphere. Surface and Coatings Technology, 2012, 209, 103-109.	2.2	30
33	Mechanical Behavior of Air Plasma-Sprayed YSZ Functionally Graded Mullite Coatings Investigated via Instrumented Indentation. Journal of Thermal Spray Technology, 2011, 20, 100-107.	1.6	13
34	Phase Composition and Microstructural Responses of Graded Mullite/YSZ Coatings Under Water Vapor Environments. Journal of Thermal Spray Technology, 2011, 20, 83-91.	1.6	11
35	Porous mullite and mullite–ZrO2 granules for thermal spraying applications. Surface and Coatings Technology, 2011, 205, 4304-4311.	2.2	19
36	Mullite and Mullite/ZrO2-7wt.%Y2O3 Powders for Thermal Spraying of Environmental Barrier Coatings. Journal of Thermal Spray Technology, 2010, 19, 286-293.	1.6	22

#	Article	IF	CITATIONS
37	Crystallization studies in mullite and mullite–YSZ beads. Journal of the European Ceramic Society, 2010, 30, 2003-2008.	2.8	10
38	Thermal conductivity in mullite/ZrO2 composite coatings. Ceramics International, 2010, 36, 1609-1614.	2.3	12