

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5431168/publications.pdf Version: 2024-02-01

NAN XU

#	Article	IF	CITATIONS
1	Enhanced mechanical properties of 70/30 brass joint by rapid cooling friction stir welding. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2014, 610, 132-138.	2.6	64
2	Modification of mechanical properties of friction stir welded Cu joint by additional liquid CO2 cooling. Materials & Design, 2014, 56, 20-25.	5.1	62
3	Dynamic and static change of grain size and texture of copper during friction stir welding. Journal of Materials Processing Technology, 2016, 232, 90-99.	3.1	42
4	Effects of heat input on the low power Nd:YAG pulse laser conduction weldability of magnesium alloy AZ61. Optics and Lasers in Engineering, 2011, 49, 89-96.	2.0	38
5	Enhanced mechanical properties of tungsten inert gas welded AZ31 magnesium alloy joint using two-pass friction stir processing with rapid cooling. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 655, 292-299.	2.6	38
6	Effects of TiO2 coating on the microstructures and mechanical properties of tungsten inert gas welded AZ31 magnesium alloy joints. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2011, 528, 7276-7284.	2.6	36
7	Abnormal distribution of microhardness in tungsten inert gas arc butt-welded AZ61 magnesium alloy plates. Materials Characterization, 2010, 61, 713-719.	1.9	32
8	Microstructure and tensile properties of rapid-cooling friction-stir-welded AZ31B Mg alloy along thickness direction. Transactions of Nonferrous Metals Society of China, 2020, 30, 3254-3262.	1.7	28
9	Corrosion and Cavitation Erosion Behaviors of Two Marine Propeller Materials in Clean and Sulfide-Polluted 3.5% NaCl Solutions. Acta Metallurgica Sinica (English Letters), 2017, 30, 712-720.	1.5	24
10	Microstructure evolution and mechanical properties of friction stir welded FeCrNiCoMn high-entropy alloy. Materials Science and Technology, 2019, 35, 577-584.	0.8	21
11	Influence of heterogeneous microstructures on the mechanical properties of low-temperature friction stir processed AZ91D Mg alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 809, 141004.	2.6	19
12	Mechanical properties' modification of large load friction stir welded AZ31B Mg alloy joint. Materials Letters, 2018, 219, 93-96.	1.3	18
13	Corrosion and Cavitation Erosion Behaviours of Cast Nickel Aluminium Bronze in 3.5% NaCl Solution with Different Sulphide Concentrations. Acta Metallurgica Sinica (English Letters), 2019, 32, 1470-1482.	1.5	18
14	Investigation on microstructure and mechanical properties of cold source assistant friction stir processed AZ31B magnesium alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 761, 138027.	2.6	18
15	Enhanced strength and ductility of high pressure die casting AZ91D Mg alloy by using cold source assistant friction stir processing. Materials Letters, 2017, 190, 24-27.	1.3	17
16	Achieving good strength-ductility synergy of friction stir welded Cu joint by using large load with extremely low welding speed and rotation rate. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 687, 73-81.	2.6	16
17	Investigation on microstructure development and mechanical properties of large-load and low-speed friction stir welded Cu-30Zn brass joint. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 726, 169-178.	2.6	16
18	Microstructure and mechanical properties' modification of low-temperature friction stir welded non-combustive Mg-9A1-1Zn-1Ca alloy joint. Journal of Materials Research and Technology, 2019, 8, 4448-4456.	2.6	16

Nan Xu

#	Article	IF	CITATIONS
19	{10â^'12} twinning assisted microstructure and mechanical properties modification of high-force fiction stir processed AZ31B Mg alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 745, 400-403.	2.6	16
20	Achieving an excellent strength–ductility synergy in Zircaloy-4 by FSW with rapid cooling. Materials Science and Technology, 2018, 34, 20-28.	0.8	13
21	Improved microstructure and mechanical properties of friction stir-welded AZ61 Mg alloy joint. Journal of Materials Research and Technology, 2022, 18, 2608-2619.	2.6	13
22	Twinning-induced mechanical properties' modification of CP-Ti by friction stir welding associated with simultaneous backward cooling. Science and Technology of Welding and Joining, 2017, 22, 610-616.	1.5	12
23	Effect of Zener–Hollomon Parameter on Microstructure and Mechanical Properties of Copper Subjected to Friction Stir Welding. Acta Metallurgica Sinica (English Letters), 2020, 33, 319-326.	1.5	11
24	Effect of preheat on TIG welding of AZ61 magnesium alloy. International Journal of Minerals, Metallurgy and Materials, 2012, 19, 360-363.	2.4	10
25	Enhanced strength and ductility of friction stir welded Cu joint by using large load with extremely low welding and rotation speed. Materials Letters, 2017, 205, 219-222.	1.3	9
26	Heterogeneous structure-induced strength and ductility synergy of α-brass subjected to rapid cooling friction stir welding. Transactions of Nonferrous Metals Society of China, 2021, 31, 3785-3799.	1.7	8
27	Structure–properties' modification of 70/30 brass by large-load and low-speed friction stir processing. Materials Science and Technology, 2018, 34, 1768-1772.	0.8	7
28	Large load friction stir welding of Mg–6Al–0.4Mn–2Ca magnesium alloy. Materials Science and Technology, 2018, 34, 1118-1130.	0.8	5
29	Improvement of microstructure and mechanical properties of C44300 tin brass subjected to double-pass rapid cooling friction stir welding. Journal of Alloys and Compounds, 2020, 834, 155052.	2.8	5
30	Improvement of microstructure and mechanical properties of AZ61 Mg alloys subjected to rapid cooling friction stir welding. Science and Technology of Welding and Joining, 2021, 26, 503-512.	1.5	5
31	Tensile property response of AZ91 Mg alloy subjected to pre-aging and high-force friction stir processing. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 841, 143033.	2.6	5
32	{10-12} twinning induced texture randomisation of friction stir processed AZ31B Mg alloy. Materials Science and Technology, 2019, 35, 993-997.	0.8	4
33	Effects of solution and aging treatments on microstructures and mechanical properties of AZ61 magnesium alloy welded joints. Rare Metals, 2012, 31, 12-16.	3.6	3
34	Microstructure and mechanical properties' modification of friction stir welded Invar 36 alloy joint. Science and Technology of Welding and Joining, 2019, 24, 79-82.	1.5	2