Suman De Sarkar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5431059/publications.pdf

Version: 2024-02-01

46 papers

4,845 citations

28 h-index 206112 48 g-index

61 all docs

61 does citations

61 times ranked

3058 citing authors

#	Article	IF	CITATIONS
1	Organophotoredox Catalyzed Stereoselective Nitration of Olefins with ⟨i⟩tert⟨ i⟩â€Butyl Nitrite under Air. Asian Journal of Organic Chemistry, 2022, 11, .	2.7	3
2	Acridine Orange Hemi(Zinc Chloride) Salt as a Lewis Acidâ€Photoredox Hybrid Catalyst for the Generation of <i>α</i> à€Carbonyl Radicals. Advanced Synthesis and Catalysis, 2022, 364, 755-765.	4.3	13
3	Trifluoroethanol as a Unique Additive for the Chemoselective Electrooxidation of Enamines to Access Unsymmetrically Substituted NHâ€Pyrroles. Angewandte Chemie - International Edition, 2022, 61, .	13.8	25
4	Trifluoroethanol as a Unique Additive for the Chemoselective Electrooxidation of Enamines to Access Unsymmetrically Substituted NHâ€Pyrroles. Angewandte Chemie, 2022, 134, .	2.0	2
5	Regioselective Synthesis of N2-Aryl 1,2,3-Triazoles via Electro-oxidative Coupling of Enamines and Aryldiazonium Salts. Organic Letters, 2022, , .	4.6	12
6	Membrane transport inspired hydrolysis of non-activated esters at near physiological pH. Chemical Communications, 2021, 57, 11088-11091.	4.1	2
7	Single Electron Transfer-Induced Redox Processes Involving <i>N</i> -(Acyloxy)phthalimides. ACS Catalysis, 2021, 11, 1640-1683.	11.2	190
8	Manganese-Catalyzed Electrochemical Tandem Azidation–Coarctate Reaction: Easy Access to 2-Azo-benzonitriles. Organic Letters, 2021, 23, 1742-1747.	4.6	27
9	Manganeseâ€catalyzed Electroâ€oxidative Azidationâ€annulation Cascade to Access Oxindoles and Quinolinones. Chemistry - an Asian Journal, 2021, 16, 748-752.	3.3	13
10	An organophotoredox-catalyzed redox-neutral cascade involving <i>N</i> -(acyloxy)phthalimides and maleimides. Organic Chemistry Frontiers, 2021, 8, 2256-2262.	4.5	30
11	Supramolecular Engineering and Self-Assembly Strategies in Photoredox Catalysis. ACS Catalysis, 2021, 11, 710-733.	11.2	40
12	Synthesis of Polysubstituted Furans through Electrochemical Selenocyclization of Homopropargylic Alcohols. Journal of Organic Chemistry, 2021, 86, 16084-16094.	3.2	30
13	Highly Diastereoselective Synthesis of Dihydroâ€benzoimidazoâ€[1,3]â€thiazines via Electroâ€oxidative Selenocyclization of Thioallyl Benzoimidazoles. Chemistry - an Asian Journal, 2021, 16, 3895-3899.	3.3	19
14	An organophotoredox-catalyzed redox-neutral cascade involving <i>N</i> -(acyloxy)phthalimides and allenamides: synthesis of indoles. Chemical Communications, 2021, 57, 13130-13133.	4.1	22
15	Electrochemical Chalcogenation of <i>β,γ</i> â€Unsaturated Amides and Oximes to Corresponding Oxazolines and Isoxazolines. Advanced Synthesis and Catalysis, 2020, 362, 1046-1052.	4.3	62
16	Alcohols as Fluoroalkyl Synthons: Niâ€catalyzed Dehydrogenative Approach to Access Polyfluoroalkyl Bisâ€indoles. Chemistry - A European Journal, 2020, 26, 16649-16654.	3.3	9
17	Organophotoredoxâ€Catalyzed Cascade Radical Annulation of 2â€(Allyloxy)arylaldehydes with <i>N</i> â€(acyloxy)phthalimides: Towards Alkylated Chromanâ€4â€one Derivatives. Chemistry - an Asian Journal, 2020, 15, 568-572.	3.3	36
18	Regioselective C–H Sulfonylation of 2 <i>H</i> Indazoles by Electrosynthesis. Journal of Organic Chemistry, 2020, 85, 3699-3708.	3.2	76

#	Article	IF	CITATIONS
19	Mechanochemical Synthesis of Functionalized Quinolines by Iodine Mediated Oxidative Annulation. Chemistry - an Asian Journal, 2020, 15, 577-580.	3.3	7
20	Cobalt-Catalyzed Sustainable Synthesis of Benzimidazoles by Redox-Economical Coupling of <i>>0</i> -Nitroanilines and Alcohols. Journal of Organic Chemistry, 2019, 84, 12111-12119.	3.2	63
21	Baseâ€Promoted Aerobic Oxidation/Homolytic Aromatic Substitution Cascade toward the Synthesis of Phenanthridines. Advanced Synthesis and Catalysis, 2019, 361, 4941-4948.	4.3	14
22	Nickelâ€Catalyzed Dehydrogenative Couplings. ChemCatChem, 2019, 11, 2243-2259.	3.7	37
23	Nickel(II) Tetraphenylporphyrin as an Efficient Photocatalyst Featuring Visible Light Promoted Dual Redox Activities. Advanced Synthesis and Catalysis, 2019, 361, 3200-3209.	4.3	56
24	Recent Developments in the de Novo Synthesis of Heterocycles by First-Row Transition-Metal-Catalyzed Acceptorless Dehydrogenation. Current Organic Chemistry, 2019, 23, 1005-1018.	1.6	5
25	Synthesis of Polysubstituted Quinolines from α-2-Aminoaryl Alcohols Via Nickel-Catalyzed Dehydrogenative Coupling. Journal of Organic Chemistry, 2018, 83, 2309-2316.	3.2	107
26	<i>meta</i> ―and <i>para</i> â€6elective Câ^'H Functionalization using Transient Mediators and Noncovalent Templates. Asian Journal of Organic Chemistry, 2018, 7, 1236-1255.	2.7	18
27	Ruthenium(II)-catalysed remote C–H alkylations as a versatile platform to meta-decorated arenes. Nature Communications, 2017, 8, 15430.	12.8	130
28	Synthetic Applications of Vinyl Ruthenium Carbenes Derived from Diazoalkanes and Alkynes. Advanced Synthesis and Catalysis, 2017, 359, 2709-2722.	4.3	14
29	Ruthenium(II) Biscarboxylateâ€Catalyzed Borylations of C(sp ²)â^'H and C(sp ³)â^'H Bonds. Chemistry - A European Journal, 2017, 23, 84-87.	3.3	37
30	Palladiumkatalysierte transannulare Câ€Hâ€Funktionalisierung alicyclischer Amine. Angewandte Chemie, 2016, 128, 10714-10716.	2.0	0
31	Allelopathic Activity of the Iron Chelator Anachelin–ÂA Molecular Hybrid with a Dual Mode of Action. Helvetica Chimica Acta, 2016, 99, 760-773.	1.6	6
32	Remote Câ^'H Functionalization by a Palladiumâ€Catalyzed Transannular Approach. Angewandte Chemie - International Edition, 2016, 55, 10558-10560.	13.8	14
33	meta- and para-Selective C–H Functionalization by C–H Activation. Topics in Organometallic Chemistry, 2015, , 217-257.	0.7	142
34	<i>N</i> -Acyl Amino Acid Ligands for Ruthenium(II)-Catalyzed <i>meta</i> -C–H <i>tert</i> -Alkylation with Removable Auxiliaries. Journal of the American Chemical Society, 2015, 137, 13894-13901.	13.7	308
35	Weakly Coordinating Directing Groups for Ruthenium(II)―Catalyzed CH Activation. Advanced Synthesis and Catalysis, 2014, 356, 1461-1479.	4.3	702
36	Ruthenium(II) atalyzed CH Activation with Isocyanates: A Versatile Route to Phthalimides. Chemistry - A European Journal, 2014, 20, 13932-13936.	3.3	75

#	Article	IF	CITATIONS
37	Catalysis with Nâ€Heterocyclic Carbenes under Oxidative Conditions. Chemistry - A European Journal, 2013, 19, 4664-4678.	3.3	456
38	N-Heterocyclic carbene (NHC) catalyzed chemoselective acylation of alcohols in the presence of amines with various acylating reagents. Chemical Science, 2013, 4, 2177.	7.4	80
39	Enantioselective cyclopropanation of enals by oxidative N-heterocyclic carbene catalysis. Chemical Communications, 2012, 48, 5190.	4.1	101
40	Nucleophilic Addition of Enols and Enamines to α,βâ€Unsaturated Acyl Azoliums: Mechanistic Studies. Angewandte Chemie - International Edition, 2012, 51, 5234-5238.	13.8	95
41	Highly Stereoselective Synthesis of 1,2,3-Trisubstituted Indanes via Oxidative N-Heterocyclic Carbene-Catalyzed Cascades. Organic Letters, 2011, 13, 4966-4969.	4.6	113
42	Kinetic Resolution of Secondary Alcohols by NHC-Catalyzed Oxidative Esterification. Synthesis, 2011, 2011, 1974-1983.	2.3	16
43	Oxidative Amidation and Azidation of Aldehydes by NHC Catalysis. Organic Letters, 2010, 12, 1992-1995.	4.6	252
44	NHC Catalyzed Oxidations of Aldehydes to Esters: Chemoselective Acylation of Alcohols in Presence of Amines. Journal of the American Chemical Society, 2010, 132, 1190-1191.	13.7	436
45	NHCâ€Catalyzed Michael Addition to α,βâ€Unsaturated Aldehydes by Redox Activation. Angewandte Chemie - International Edition, 2010, 49, 9266-9269.	13.8	329
46	Biomimetic Carbene atalyzed Oxidations of Aldehydes Using TEMPO. Angewandte Chemie - International Edition, 2008, 47, 8727-8730.	13.8	354