Suman De Sarkar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5431059/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Weakly Coordinating Directing Groups for Ruthenium(II)―Catalyzed Cĩ£¿H Activation. Advanced Synthesis and Catalysis, 2014, 356, 1461-1479.	4.3	702
2	Catalysis with Nâ€Heterocyclic Carbenes under Oxidative Conditions. Chemistry - A European Journal, 2013, 19, 4664-4678.	3.3	456
3	NHC Catalyzed Oxidations of Aldehydes to Esters: Chemoselective Acylation of Alcohols in Presence of Amines. Journal of the American Chemical Society, 2010, 132, 1190-1191.	13.7	436
4	Biomimetic Carbene atalyzed Oxidations of Aldehydes Using TEMPO. Angewandte Chemie - International Edition, 2008, 47, 8727-8730.	13.8	354
5	NHC atalyzed Michael Addition to α,βâ€Unsaturated Aldehydes by Redox Activation. Angewandte Chemie - International Edition, 2010, 49, 9266-9269.	13.8	329
6	<i>N</i> -Acyl Amino Acid Ligands for Ruthenium(II)-Catalyzed <i>meta</i> -C–H <i>tert</i> -Alkylation with Removable Auxiliaries. Journal of the American Chemical Society, 2015, 137, 13894-13901.	13.7	308
7	Oxidative Amidation and Azidation of Aldehydes by NHC Catalysis. Organic Letters, 2010, 12, 1992-1995.	4.6	252
8	Single Electron Transfer-Induced Redox Processes Involving <i>N</i> -(Acyloxy)phthalimides. ACS Catalysis, 2021, 11, 1640-1683.	11.2	190
9	meta- and para-Selective C–H Functionalization by C–H Activation. Topics in Organometallic Chemistry, 2015, , 217-257.	0.7	142
10	Ruthenium(II)-catalysed remote C–H alkylations as a versatile platform to meta-decorated arenes. Nature Communications, 2017, 8, 15430.	12.8	130
11	Highly Stereoselective Synthesis of 1,2,3-Trisubstituted Indanes via Oxidative N-Heterocyclic Carbene-Catalyzed Cascades. Organic Letters, 2011, 13, 4966-4969.	4.6	113
12	Synthesis of Polysubstituted Quinolines from α-2-Aminoaryl Alcohols Via Nickel-Catalyzed Dehydrogenative Coupling. Journal of Organic Chemistry, 2018, 83, 2309-2316.	3.2	107
13	Enantioselective cyclopropanation of enals by oxidative N-heterocyclic carbene catalysis. Chemical Communications, 2012, 48, 5190.	4.1	101
14	Nucleophilic Addition of Enols and Enamines to α,βâ€Unsaturated Acyl Azoliums: Mechanistic Studies. Angewandte Chemie - International Edition, 2012, 51, 5234-5238.	13.8	95
15	N-Heterocyclic carbene (NHC) catalyzed chemoselective acylation of alcohols in the presence of amines with various acylating reagents. Chemical Science, 2013, 4, 2177.	7.4	80
16	Regioselective C–H Sulfonylation of 2 <i>H</i> -Indazoles by Electrosynthesis. Journal of Organic Chemistry, 2020, 85, 3699-3708.	3.2	76
17	Ruthenium(II) atalyzed CH Activation with Isocyanates: A Versatile Route to Phthalimides. Chemistry - A European Journal, 2014, 20, 13932-13936.	3.3	75
18	Cobalt-Catalyzed Sustainable Synthesis of Benzimidazoles by Redox-Economical Coupling of <i>>o</i> -Nitroanilines and Alcohols. Journal of Organic Chemistry, 2019, 84, 12111-12119.	3.2	63

SUMAN DE SARKAR

#	Article	IF	CITATIONS
19	Electrochemical Chalcogenation of <i>β,γ</i> â€Unsaturated Amides and Oximes to Corresponding Oxazolines and Isoxazolines. Advanced Synthesis and Catalysis, 2020, 362, 1046-1052.	4.3	62
20	Nickel(II) Tetraphenylporphyrin as an Efficient Photocatalyst Featuring Visible Light Promoted Dual Redox Activities. Advanced Synthesis and Catalysis, 2019, 361, 3200-3209.	4.3	56
21	Supramolecular Engineering and Self-Assembly Strategies in Photoredox Catalysis. ACS Catalysis, 2021, 11, 710-733.	11.2	40
22	Ruthenium(II) Biscarboxylateâ€Catalyzed Borylations of C(sp ²)â^'H and C(sp ³)â^'H Bonds. Chemistry - A European Journal, 2017, 23, 84-87.	3.3	37
23	Nickel atalyzed Dehydrogenative Couplings. ChemCatChem, 2019, 11, 2243-2259.	3.7	37
24	Organophotoredoxâ€Catalyzed Cascade Radical Annulation of 2â€(Allyloxy)arylaldehydes with <i>N</i> â€(acyloxy)phthalimides: Towards Alkylated Chromanâ€4â€one Derivatives. Chemistry - an Asian Journal, 2020, 15, 568-572.	3.3	36
25	An organophotoredox-catalyzed redox-neutral cascade involving <i>N</i> -(acyloxy)phthalimides and maleimides. Organic Chemistry Frontiers, 2021, 8, 2256-2262.	4.5	30
26	Synthesis of Polysubstituted Furans through Electrochemical Selenocyclization of Homopropargylic Alcohols. Journal of Organic Chemistry, 2021, 86, 16084-16094.	3.2	30
27	Manganese-Catalyzed Electrochemical Tandem Azidation–Coarctate Reaction: Easy Access to 2-Azo-benzonitriles. Organic Letters, 2021, 23, 1742-1747.	4.6	27
28	Trifluoroethanol as a Unique Additive for the Chemoselective Electrooxidation of Enamines to Access Unsymmetrically Substituted NHâ€Pyrroles. Angewandte Chemie - International Edition, 2022, 61, .	13.8	25
29	An organophotoredox-catalyzed redox-neutral cascade involving <i>N</i> -(acyloxy)phthalimides and allenamides: synthesis of indoles. Chemical Communications, 2021, 57, 13130-13133.	4.1	22
30	Highly Diastereoselective Synthesis of Dihydroâ€benzoimidazoâ€{1,3]â€thiazines via Electroâ€oxidative Selenocyclization of Thioallyl Benzoimidazoles. Chemistry - an Asian Journal, 2021, 16, 3895-3899.	3.3	19
31	<i>meta</i> ―and <i>para</i> â€Selective Câ^'H Functionalization using Transient Mediators and Noncovalent Templates. Asian Journal of Organic Chemistry, 2018, 7, 1236-1255.	2.7	18
32	Kinetic Resolution of Secondary Alcohols by NHC-Catalyzed Oxidative Esterification. Synthesis, 2011, 2011, 1974-1983.	2.3	16
33	Remote Câ^'H Functionalization by a Palladiumâ€Catalyzed Transannular Approach. Angewandte Chemie - International Edition, 2016, 55, 10558-10560.	13.8	14
34	Synthetic Applications of Vinyl Ruthenium Carbenes Derived from Diazoalkanes and Alkynes. Advanced Synthesis and Catalysis, 2017, 359, 2709-2722.	4.3	14
35	Baseâ€Promoted Aerobic Oxidation/Homolytic Aromatic Substitution Cascade toward the Synthesis of Phenanthridines. Advanced Synthesis and Catalysis, 2019, 361, 4941-4948.	4.3	14
36	Manganeseâ€catalyzed Electroâ€oxidative Azidationâ€annulation Cascade to Access Oxindoles and Quinolinones. Chemistry - an Asian Journal, 2021, 16, 748-752.	3.3	13

3

SUMAN DE SARKAR

#	Article	IF	CITATIONS
37	Acridine Orange Hemi(Zinc Chloride) Salt as a Lewis Acidâ€Photoredox Hybrid Catalyst for the Generation of <i>α</i> â€Carbonyl Radicals. Advanced Synthesis and Catalysis, 2022, 364, 755-765.	4.3	13
38	Regioselective Synthesis of N2-Aryl 1,2,3-Triazoles via Electro-oxidative Coupling of Enamines and Aryldiazonium Salts. Organic Letters, 2022, , .	4.6	12
39	Alcohols as Fluoroalkyl Synthons: Niâ€catalyzed Dehydrogenative Approach to Access Polyfluoroalkyl Bisâ€indoles. Chemistry - A European Journal, 2020, 26, 16649-16654.	3.3	9
40	Mechanochemical Synthesis of Functionalized Quinolines by Iodine Mediated Oxidative Annulation. Chemistry - an Asian Journal, 2020, 15, 577-580.	3.3	7
41	Allelopathic Activity of the Iron Chelator Anachelin–ÂA Molecular Hybrid with a Dual Mode of Action. Helvetica Chimica Acta, 2016, 99, 760-773.	1.6	6
42	Recent Developments in the de Novo Synthesis of Heterocycles by First-Row Transition-Metal-Catalyzed Acceptorless Dehydrogenation. Current Organic Chemistry, 2019, 23, 1005-1018.	1.6	5
43	Organophotoredox Catalyzed Stereoselective Nitration of Olefins with <i>tert</i> â€Butyl Nitrite under Air. Asian Journal of Organic Chemistry, 2022, 11, .	2.7	3
44	Membrane transport inspired hydrolysis of non-activated esters at near physiological pH. Chemical Communications, 2021, 57, 11088-11091.	4.1	2
45	Trifluoroethanol as a Unique Additive for the Chemoselective Electrooxidation of Enamines to Access Unsymmetrically Substituted NHâ€Pyrroles. Angewandte Chemie, 2022, 134, .	2.0	2
46	Palladiumkatalysierte transannulare Câ€Hâ€Funktionalisierung alicyclischer Amine. Angewandte Chemie, 2016, 128, 10714-10716.	2.0	0