
Sylvia Cohen-Kaminsky

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5430736/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Iron Deficiency in Pulmonary Arterial Hypertension: A Deep Dive into the Mechanisms. Cells, 2021, 10, 477.	4.1	16
2	In vivo miR-138-5p inhibition alleviates monocrotaline-induced pulmonary hypertension and normalizes pulmonary KCNK3 and SLC45A3 expression. Respiratory Research, 2020, 21, 186.	3.6	20
3	Multimodal Imaging Mass Spectrometry to Identify Markers of Pulmonary Arterial Hypertension in Human Lung Tissue Using MALDI-ToF, ToF-SIMS, and Hybrid SIMS. Analytical Chemistry, 2020, 92, 12079-12087.	6.5	33
4	Implication of the deacetylase sirtuin-1 on synovial angiogenesis and persistence of experimental arthritis. Annals of the Rheumatic Diseases, 2020, 79, 891-900.	0.9	13
5	Trichloroethylene increases pulmonary endothelial permeability: implication for pulmonary venoâ€occlusive disease. Pulmonary Circulation, 2020, 10, 1-4.	1.7	4
6	Functional interaction between PDGFβ and GluN2B-containing NMDA receptors in smooth muscle cell proliferation and migration in pulmonary arterial hypertension. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2019, 316, L445-L455.	2.9	12
7	Convergent Strategy to Dizocilpine MK-801 and Derivatives. Journal of Organic Chemistry, 2018, 83, 4264-4269.	3.2	7
8	NMDA-Type Glutamate Receptor Activation Promotes Vascular Remodeling and Pulmonary Arterial Hypertension. Circulation, 2018, 137, 2371-2389.	1.6	75
9	How does binding of agonist ligands control intrinsic molecular dynamics in human NMDA receptors?. PLoS ONE, 2018, 13, e0201234.	2.5	5
10	Immune repertoire-based signatures in pre-capillary pulmonary hypertension. , 2018, , .		1
11	NMDA receptor activation promotes vascular remodeling and pulmonary arterial hypertension. , 2018, , .		0
12	Fine structural modifications of heparan sulfate sulfation patterns in lung are associated with functional effects in Precapillary Pulmonary Hypertension. , 2018, , .		0
13	Volatolomics of breath as an emerging frontier in pulmonary arterial hypertension. European Respiratory Journal, 2017, 49, 1601897.	6.7	32
14	Diagnosis and Classification of 17 Diseases from 1404 Subjects <i>via</i> Pattern Analysis of Exhaled Molecules. ACS Nano, 2017, 11, 112-125.	14.6	386
15	MicroRNA networks in pulmonary arterial hypertension. Current Opinion in Oncology, 2016, 28, 72-82.	2.4	27
16	LSC Abstract – Exploring mechanisms and early detection of pulmonary arterial hypertension via breath and lung vascular cells' volatolomics. , 2016, , .		0
17	NMDA receptor crosstalk with PDGFR- \hat{l}^2 and BMPR2 is involved in smooth muscle cell proliferation in pulmonary arterial hypertension. , 2016, , .		0
18	Does Circulating IL-17 Identify a Subset of Patients With Idiopathic Pulmonary Arterial Hypertension?: Response. Chest, 2015, 148, e132-e133.	0.8	0

#	ARTICLE	IF	CITATIONS
19	T-Helper 17 Cell Polarization in Pulmonary Arterial Hypertension. Chest, 2015, 147, 1610-1620.	0.8	72
20	Chemotherapy-Induced Pulmonary Hypertension. American Journal of Pathology, 2015, 185, 356-371.	3.8	149
21	Endothelial-to-Mesenchymal Transition in Pulmonary Hypertension. Circulation, 2015, 131, 1006-1018.	1.6	441
22	Detecting lung infections in breathprints: empty promise or next generation diagnosis of infections. European Respiratory Journal, 2015, 45, 21-24.	6.7	15
23	Olfactory receptors in pulmonary arterial hypertension: A novel pathway of vascular remodeling?. , 2015, , .		1
24	LSC Abstract – Glutamatergic signaling through pulmonary vascular NMDA receptors in pulmonary hypertension. , 2015, , .		0
25	Chemotherapy-induced pulmonary hypertension: Role of alkylating agents. , 2015, , .		3
26	In-situmetabolite profiling of remodeled arteries in Pulmonary Arterial Hypertension (PAH) using innovative mass spectrometry imaging (MSI) tools. , 2015, , .		0
27	CXCL13 in Tertiary Lymphoid Tissues: Sites of Production Are Different from Sites of Functional Localization. American Journal of Respiratory and Critical Care Medicine, 2014, 189, 369-370.	5.6	4
28	Inflammation in pulmonary hypertension: what we know and what we could logically and safely target first. Drug Discovery Today, 2014, 19, 1251-1256.	6.4	48
29	N-acetylcysteine improves established monocrotaline-induced pulmonary hypertension in rats. Respiratory Research, 2014, 15, 65.	3.6	38
30	Immune Dysregulation and Endothelial Dysfunction in Pulmonary Arterial Hypertension. Circulation, 2014, 129, 1332-1340.	1.6	141
31	Evidence of endogenous volatile organic compounds as biomarkers of diseases in alveolar breath. Annales Pharmaceutiques Francaises, 2013, 71, 203-215.	1.0	19
32	A Proof of Concept for the Detection and Classification of Pulmonary Arterial Hypertension through Breath Analysis with a Sensor Array. American Journal of Respiratory and Critical Care Medicine, 2013, 188, 756-759.	5.6	40
33	Cytotoxic Cells and Granulysin in Pulmonary Arterial Hypertension and Pulmonary Veno-occlusive Disease. American Journal of Respiratory and Critical Care Medicine, 2013, 187, 189-196.	5.6	54
34	Circulating fibrocytes and pulmonary arterial hypertension. European Respiratory Journal, 2012, 39, 210-212.	6.7	8
35	Inflammation in Pulmonary Arterial Hypertension. Chest, 2012, 141, 210-221.	0.8	333

Autoimmunity And Pulmonary Arterial Hypertension: The Role Of Leptin. , 2012, , .

1

#	Article	IF	CITATIONS
37	Leptin and regulatory T-lymphocytes in idiopathic pulmonary arterial hypertension. European Respiratory Journal, 2012, 40, 895-904.	6.7	110
38	Pulmonary Lymphoid Neogenesis in Idiopathic Pulmonary Arterial Hypertension. American Journal of Respiratory and Critical Care Medicine, 2012, 185, 311-321.	5.6	249
39	Half of the T ell repertoire combinatorial diversity is genetically determined in humans and humanized mice. European Journal of Immunology, 2012, 42, 760-770.	2.9	14
40	Inflammation in Pulmonary Arterial Hypertension. , 2012, , 213-229.		1
41	Sustained calcium signalling and caspase-3 activation involve NMDA receptors in thymocytes in contact with dendritic cells. Cell Death and Differentiation, 2011, 18, 99-108.	11.2	48
42	C-Kit–Positive Cells Accumulate in Remodeled Vessels of Idiopathic Pulmonary Arterial Hypertension. American Journal of Respiratory and Critical Care Medicine, 2011, 184, 116-123.	5.6	176
43	Targeting of c-kit+ haematopoietic progenitor cells prevents hypoxic pulmonary hypertension. European Respiratory Journal, 2011, 37, 1392-1399.	6.7	85
44	Imatinib inhibits bone marrow-derived c-kit+ cell mobilisation in hypoxic pulmonary hypertension. European Respiratory Journal, 2010, 36, 1209-1211.	6.7	25
45	Understanding the Role of CD4+CD25 ^{high} (So-Called Regulatory) T Cells in Idiopathic Pulmonary Arterial Hypertension. Respiration, 2008, 75, 253-256.	2.6	10
46	Reproducibility, Interrater Agreement, and Age-Related Changes of Fractional Anisotropy Measures at 3T in Healthy Subjects: Effect of the Applied b-Value. American Journal of Neuroradiology, 2008, 29, 1128-1133.	2.4	74
47	On-chip hybridization kinetics for optimization of gene expression experiments. BioTechniques, 2008, 44, 109-117.	1.8	15
48	Prospects for a T-cell receptor vaccination against myasthenia gravis. Expert Review of Vaccines, 2005, 4, 473-492.	4.4	9
49	Rationale for a T Cell Receptor Peptide Therapy in Myasthenia Gravis. Annals of the New York Academy of Sciences, 2003, 998, 320-323.	3.8	2
50	Circulating regulatory anti–T cell receptor antibodies in patients with myasthenia gravis. Journal of Clinical Investigation, 2003, 112, 265-274.	8.2	21
51	Circulating regulatory anti–T cell receptor antibodies in patients with myasthenia gravis. Journal of Clinical Investigation, 2003, 112, 265-274.	8.2	8
52	Prevention of autoimmune attack by targeting specific T-cell receptors in a severe combined immunodeficiency mouse model of myasthenia gravis. Annals of Neurology, 1999, 46, 559-567.	5.3	36
53	Chromatin immunoselection defines a TAL-1 target gene. EMBO Journal, 1998, 17, 5151-5160.	7.8	52
54	Respective Role of Thymus and Muscle in Autoimmune Myasthenia Gravisa. Annals of the New York Academy of Sciences, 1998, 841, 397-406.	3.8	14

Sylvia Cohen-Kaminsky

#	Article	IF	CITATIONS
55	p45 NF-E2 regulates expression of thromboxane synthase in megakaryocytes. EMBO Journal, 1997, 16, 5654-5661.	7.8	73
56	Altered intrathymic T-cell repertoire in human myasthenia gravis. Annals of Neurology, 1997, 41, 731-741.	5.3	38
57	T-Cell Receptor Expression in the Thymus from Patients with Myasthenia Gravis. Annals of the New York Academy of Sciences, 1995, 756, 438-440.	3.8	4
58	In vivo preferential usage of TCR V/gb8 in Torpedo acetylcholine receptor immune response in the murine experimental model of myasthenia gravis. Journal of Neuroimmunology, 1995, 58, 191-200.	2.3	6
59	Identification by genomic typing of non-DR3 HLA class II genes Associated with Myasthenia Gravis. Human Immunology, 1993, 36, 49.	2.4	1
60	Identification of genomic typing of non-DR3 HLA class II genes associated with myasthenia gravis. Journal of Neuroimmunology, 1993, 47, 115-122.	2.3	76
61	High IL-6 Gene Expression and Production by Cultured Human Thymic Epithelial Cells from Patients with Myasthenia Gravis. Annals of the New York Academy of Sciences, 1993, 681, 97-99.	3.8	24
62	In Situ Production of Interleukins in Hyperplastic Thymus from Myasthenia Gravis Patients. Annals of the New York Academy of Sciences, 1993, 681, 100-102.	3.8	5
63	Abnormal Immunoregulation Involving the IL-2/IL-2 Receptor Complex in Myasthenia Gravis. Annals of the New York Academy of Sciences, 1993, 681, 283-284.	3.8	1
64	Follow-up of soluble interleukin-2 receptor levels after thymectomy in patients with myasthenia gravis. Clinical Immunology and Immunopathology, 1992, 62, 190-198.	2.0	12
65	Antibodies to thymic epithelial cells in myasthenia gravis. Journal of Neuroimmunology, 1991, 35, 101-110.	2.3	20
66	In situ production of interleukins in hyperplastic thymus from myasthenia gravis patients. Human Pathology, 1991, 22, 461-468.	2.0	50
67	T-cell antigenic sites involved in Myasthenia Gravis: Correlations with antibody titre and disease severity. Journal of Autoimmunity, 1991, 4, 137-153.	6.5	24
68	Synergistic induction of interleukin-6 production and gene expression in human thymic epithelial cells by LPS and cytokines. Cellular Immunology, 1991, 138, 79-93.	3.0	39
69	In vitro interleukin-1 (IL-1) production in thymic hyperplasia and thymoma from patients with myasthenia gravis. Journal of Clinical Immunology, 1991, 11, 268-278.	3.8	17
70	Evidence of enhanced recombinant interleukin-2 sensitivity in thymic lymphocytes from patients with myasthenia gravis: possible role in autoimmune pathogenesis. Journal of Neuroimmunology, 1989, 24, 75-85.	2.3	31
71	High recombinant interleukin-2 sensitivity of peripheral blood lymphocytes from patients with Myasthenia Gravis: Correlations with clinical parameters. Journal of Autoimmunity, 1989, 2, 241-258.	6.5	23
72	Cellular aspects of myasthenia gravis. Immunologic Research, 1988, 7, 189-199.	2.9	9

#	Article	IF	CITATIONS
73	Proliferative Responses to Acetylcholine Receptor Peptides in Myasthenia Gravis. Annals of the New York Academy of Sciences, 1988, 540, 504-505.	3.8	1
74	Responsiveness of Myasthenia Gravis Lymphocytes to Recombinant Interleukin-2. Annals of the New York Academy of Sciences, 1988, 540, 506-507.	3.8	0
75	Responsiveness of myasthenia gravis (MG) lymphocytes to recombinant interleukin 2 (r-IL2). Journal of Neuroimmunology, 1987, 16, 36.	2.3	Ο