List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/543061/publications.pdf Version: 2024-02-01

331 papers	15,111 citations	13854 67 h-index	24961 109 g-index
342	342	342	10758
all docs	docs citations	times ranked	citing authors

KEVIN M DDISE

#	Article	IF	CITATIONS
1	Radiation-induced bystander signalling in cancer therapy. Nature Reviews Cancer, 2009, 9, 351-360.	12.8	703
2	Cell-Specific Radiosensitization by Gold Nanoparticles at Megavoltage Radiation Energies. International Journal of Radiation Oncology Biology Physics, 2011, 79, 531-539.	0.4	388
3	Studies of bystander effects in human fibroblasts using a charged particle microbeam. International Journal of Radiation Biology, 1998, 74, 793-798.	1.0	387
4	Physical basis and biological mechanisms of gold nanoparticle radiosensitization. Nanoscale, 2012, 4, 4830.	2.8	376
5	Biological consequences of nanoscale energy deposition near irradiated heavy atom nanoparticles. Scientific Reports, 2011, 1, 18.	1.6	335
6	Gold nanoparticles for cancer radiotherapy: a review. Cancer Nanotechnology, 2016, 7, 8.	1.9	329
7	New insights on cell death from radiation exposure. Lancet Oncology, The, 2005, 6, 520-528.	5.1	316
8	Targeted cytoplasmic irradiation induces bystander responses. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 13495-13500.	3.3	258
9	A review of dsb induction data for varying quality radiations. International Journal of Radiation Biology, 1998, 74, 173-184.	1.0	216
10	Non-targeted effects of ionising radiation—Implications for low dose risk. Mutation Research - Reviews in Mutation Research, 2013, 752, 84-98.	2.4	201
11	Direct evidence for a bystander effect of ionizing radiation in primary human fibroblasts. British Journal of Cancer, 2001, 84, 674-679.	2.9	200
12	Nitric oxide-mediated signaling in the bystander response of individually targeted glioma cells. Cancer Research, 2003, 63, 8437-42.	0.4	200
13	Evaluation of cytotoxicity and radiation enhancement using 1.9 nm gold particles: potential application for cancer therapy. Nanotechnology, 2010, 21, 295101.	1.3	194
14	Role of TGF-β1 and nitric oxide in the bystander response of irradiated glioma cells. Oncogene, 2008, 27, 434-440.	2.6	188
15	A charged-particle microbeam: I. Development of an experimental system for targeting cells individually with counted particles. International Journal of Radiation Biology, 1997, 72, 375-385.	1.0	181
16	Biological mechanisms of gold nanoparticle radiosensitization. Cancer Nanotechnology, 2017, 8, 2.	1.9	180
17	ATR-dependent radiation-induced γH2AX foci in bystander primary human astrocytes and glioma cells. Oncogene, 2007, 26, 993-1002.	2.6	179
18	Relative Biological Effectiveness Variation Along Monoenergetic and Modulated Bragg Peaks of a 62-MeV Therapeutic Proton Beam: A Preclinical Assessment. International Journal of Radiation Oncology Biology Physics, 2014, 90, 27-35.	0.4	178

#	Article	IF	CITATIONS
19	A Review of Studies of Ionizing Radiation-Induced Double-Strand Break Clustering. Radiation Research, 2001, 156, 572-576.	0.7	176
20	Nanodosimetric effects of gold nanoparticles in megavoltage radiation therapy. Radiotherapy and Oncology, 2011, 100, 412-416.	0.3	174
21	The use of theranostic gadolinium-based nanoprobes to improve radiotherapy efficacy. British Journal of Radiology, 2014, 87, 20140134.	1.0	167
22	Cytoplasmic Irradiation Induces Mitochondrial-Dependent 53BP1 Protein Relocalization in Irradiated and Bystander Cells. Cancer Research, 2007, 67, 5872-5879.	0.4	160
23	Cell type-dependent uptake, localization, and cytotoxicity of 1.9 nm gold nanoparticles. International Journal of Nanomedicine, 2012, 7, 2673.	3.3	150
24	DNA double-strand break distributions in X-ray and alpha-particle irradiated V79 cells: evidence for non-random breakage. International Journal of Radiation Biology, 1997, 71, 347-363.	1.0	148
25	Inactivation of V79 cells by low-energy protons, deuterons and helium-3 ions. International Journal of Radiation Biology, 1996, 69, 729-738.	1.0	145
26	Use of the γ-H2AX Assay to Investigate DNA Repair Dynamics Following Multiple Radiation Exposures. PLoS ONE, 2013, 8, e79541.	1.1	143
27	Low-Dose Binary Behavior of Bystander Cell Killing after Microbeam Irradiation of a Single Cell with Focused CKX Rays. Radiation Research, 2005, 163, 332-336.	0.7	139
28	Low-Dose Studies of Bystander Cell Killing with Targeted Soft X Rays. Radiation Research, 2003, 160, 505-511.	0.7	129
29	A charged-particle microbeam: II. A single-particle micro-collimation and detection system International Journal of Radiation Biology, 1997, 72, 387-395.	1.0	123
30	A review of the bystander effect and its implications for low-dose exposure. Radiation Protection Dosimetry, 2003, 104, 347-355.	0.4	120
31	Histone H2AX phosphorylation as a molecular pharmacological marker for DNA interstrand crosslink cancer chemotherapy. Biochemical Pharmacology, 2008, 76, 19-27.	2.0	120
32	ATM Acts Downstream of ATR in the DNA Damage Response Signaling of Bystander Cells. Cancer Research, 2008, 68, 7059-7065.	0.4	116
33	Bystander-induced Apoptosis and Premature Differentiation in Primary Urothelial Explants after Charged Particle Microbeam Irradiation. Radiation Protection Dosimetry, 2002, 99, 249-251.	0.4	112
34	Imaging and radiation effects of gold nanoparticles in tumour cells. Scientific Reports, 2016, 6, 19442.	1.6	111
35	Calcium Fluxes Modulate the Radiation-Induced Bystander Responses in Targeted Glioma and Fibroblast Cells. Radiation Research, 2006, 166, 479-487.	0.7	110
36	A proliferation-dependent bystander effect in primary porcine and human urothelial explants in response to targeted irradiation. British Journal of Cancer, 2003, 88, 767-774.	2.9	102

#	Article	IF	CITATIONS
37	Roadmap for metal nanoparticles in radiation therapy: current status, translational challenges, and future directions. Physics in Medicine and Biology, 2020, 65, 21RM02.	1.6	101
38	Evidence for the Direct Binding of Phosphorylated p53 to Sites of DNA Breaks In vivo. Cancer Research, 2005, 65, 10810-10821.	0.4	98
39	Biological effectiveness on live cells of laser driven protons at dose rates exceeding 109 Gy/s. AIP Advances, 2012, 2, .	0.6	97
40	A Focused Ultrasoft X-Ray Microbeam for Targeting Cells Individually with Submicrometer Accuracy. Radiation Research, 2001, 156, 796-804.	0.7	94
41	BRCA1 Deficiency Exacerbates Estrogen-Induced DNA Damage and Genomic Instability. Cancer Research, 2014, 74, 2773-2784.	0.4	94
42	The Irradiation of V79 Mammalian Cells by Protons with Energies below 2 MeV. International Journal of Radiation Biology, 1989, 56, 221-237.	1.0	93
43	Bystander-induced differentiation: A major response to targeted irradiation of a urothelial explant model. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2006, 597, 43-49.	0.4	91
44	Measurement of DNA Damage by Electrons with Energies between 25 and 4000 EV. International Journal of Radiation Biology, 1993, 64, 651-658.	1.0	90
45	Bystander signaling between glioma cells and fibroblasts targeted with counted particles. International Journal of Cancer, 2005, 116, 45-51.	2.3	89
46	The role of mitochondrial function in gold nanoparticle mediated radiosensitisation. Cancer Nanotechnology, 2014, 5, 5.	1.9	89
47	High dose bystander effects in spatially fractionated radiation therapy. Cancer Letters, 2015, 356, 52-57.	3.2	89
48	ESTRO ACROP: Technology for precision small animal radiotherapy research: Optimal use and challenges. Radiotherapy and Oncology, 2018, 126, 471-478.	0.3	88
49	Cell Killing and DNA Damage in Chinese Hamster V79 Cells Treated with Hydrogen Peroxide. International Journal of Radiation Biology, 1989, 55, 583-592.	1.0	86
50	Validation of a Metastatic Assay using biopsies to improve risk stratification in patients with prostate cancer treated with radical radiation therapy. Annals of Oncology, 2018, 29, 215-222.	0.6	86
51	AGuIX [®] from bench to bedside—Transfer of an ultrasmall theranostic gadolinium-based nanoparticle to clinical medicine. British Journal of Radiology, 2019, 92, 20180365.	1.0	86
52	Out-of-Field Cell Survival Following Exposure to Intensity-Modulated Radiation Fields. International Journal of Radiation Oncology Biology Physics, 2011, 79, 1516-1522.	0.4	83
53	A study of endonuclease III-sensitive sites in irradiated DNA: detection of α-particle-induced oxidative damage. Carcinogenesis, 1999, 20, 905-909.	1.3	82
54	Bystander responses induced by low LET radiation. Oncogene, 2003, 22, 7043-7049.	2.6	82

#	Article	IF	CITATIONS
55	The Irradiation of V79 Mammalian Cells by Protons with Energies below 2 MeV. Part II. Measurement of Oxygen Enhancement Ratios and DNA Damage. International Journal of Radiation Biology, 1990, 58, 261-277.	1.0	81
56	Delayed lethality, apoptosis and micronucleus formation in human fibroblasts irradiated with X-rays or alpha-particles. International Journal of Radiation Biology, 1999, 75, 985-993.	1.0	81
57	Optimising element choice for nanoparticle radiosensitisers. Nanoscale, 2016, 8, 581-589.	2.8	80
58	The Relationship between Radiation-induced DNA Double-strand Breaks and Cell Kill in Hamster V79 Fibroblasts Irradiated with 250 kVp X-rays, 2·3 MeV Neutrons or ²³⁸ Pu α-particles. International Journal of Radiation Biology and Related Studies in Physics, Chemistry, and Medicine, 1987, 52, 893-902.	1.0	79
59	Effect of Radiation Quality on Lesion Complexity in Cellular DNA. International Journal of Radiation Biology, 1994, 66, 537-542.	1.0	75
60	Radiation Effects on the Cytoskeleton of Endothelial Cells and Endothelial Monolayer Permeability. International Journal of Radiation Oncology Biology Physics, 2007, 69, 1553-1562.	0.4	75
61	Signaling factors for irradiated glioma cells induced bystander responses in fibroblasts. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2008, 638, 139-145.	0.4	75
62	Variations in the Processing of DNA Double-Strand Breaks Along 60-MeV Therapeutic Proton Beams. International Journal of Radiation Oncology Biology Physics, 2016, 95, 86-94.	0.4	74
63	Low-Dose Hypersensitivity in Chinese Hamster V79 Cells Targeted with Counted Protons Using a Charged-Particle Microbeam. Radiation Research, 2001, 156, 526-534.	0.7	73
64	DNA Double Strand Break Repair: A Radiation Perspective. Antioxidants and Redox Signaling, 2013, 18, 2458-2472.	2.5	72
65	Gold nanoparticle cellular uptake, toxicity and radiosensitisation in hypoxic conditions. Radiotherapy and Oncology, 2014, 110, 342-347.	0.3	72
66	Mechanistic Modelling of DNA Repair and Cellular Survival Following Radiation-Induced DNA Damage. Scientific Reports, 2016, 6, 33290.	1.6	72
67	Radiobiology of the FLASH effect. Medical Physics, 2022, 49, 1993-2013.	1.6	72
68	Non-targeted Effects of Radiation: Bystander Responses in Cell and Tissue Models. Radiation Protection Dosimetry, 2002, 99, 223-226.	0.4	71
69	hSSB1 rapidly binds at the sites of DNA double-strand breaks and is required for the efficient recruitment of the MRN complex. Nucleic Acids Research, 2011, 39, 1692-1702.	6.5	70
70	Long-Term Genomic Instability in Human Lymphocytes Induced by Single-Particle Irradiation. Radiation Research, 2001, 155, 122-126.	0.7	69
71	Evidence for induction of DNA double strand breaks in the bystander response to targeted soft X-rays in CHO cells. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2004, 556, 209-215.	0.4	68
72	Apoptosis is initiated in human keratinocytes exposed to signalling factors from microbeam irradiated cells. International Journal of Radiation Biology, 2006, 82, 393-399.	1.0	68

#	Article	IF	CITATIONS
73	Use of Radiation Quality as a Probe for DNA Lesion Complexity. International Journal of Radiation Biology, 1994, 65, 43-48.	1.0	67
74	Genomic Instability in Chinese Hamster Cells after Exposure to X Rays or Alpha Particles of Different Mean Linear Energy Transfer. Radiation Research, 1997, 147, 22.	0.7	65
75	Radiation-induced intercellular signaling mediated by cytochrome-c via a p53-dependent pathway in hepatoma cells. Oncogene, 2011, 30, 1947-1955.	2.6	62
76	Critical energies for SSB and DSB induction in plasmid DNA by low-energy photons: action spectra for strand-break induction in plasmid DNA irradiated in vacuum. International Journal of Radiation Biology, 2000, 76, 881-890.	1.0	59
77	Evidence for Complexity at the Nanometer Scale of Radiation-Induced DNA DSBs as a Determinant of Rejoining Kinetics. Radiation Research, 2005, 164, 73-85.	0.7	58
78	Mechanistic Rationale to Target PTEN-Deficient Tumor Cells with Inhibitors of the DNA Damage Response Kinase ATM. Cancer Research, 2015, 75, 2159-2165.	0.4	58
79	Investigating the Implications of a Variable RBE on Proton Dose Fractionation Across a Clinical Pencil Beam Scanned Spread-Out Bragg Peak. International Journal of Radiation Oncology Biology Physics, 2016, 95, 70-77.	0.4	57
80	The Radiobiology of Proton Therapy: Challenges and Opportunities Around Relative Biological Effectiveness. Clinical Oncology, 2018, 30, 285-292.	0.6	56
81	A Kinetic-Based Model of Radiation-Induced Intercellular Signalling. PLoS ONE, 2013, 8, e54526.	1.1	55
82	New advances in radiation biology. Occupational Medicine, 2006, 56, 156-161.	0.8	54
83	Local DNA damage by proton microbeam irradiation induces poly(ADP-ribose) synthesis in mammalian cells. Mutagenesis, 2003, 18, 411-416.	1.0	53
84	Bystander Effects Induced by Diffusing Mediators after Photodynamic Stress. Radiation Research, 2009, 172, 74-81.	0.7	53
85	New molecular targets in radiotherapy: DNA damage signalling and repair in targeted and non-targeted cells. European Journal of Pharmacology, 2009, 625, 151-155.	1.7	51
86	What is the Role of the Bystander Response in Radionuclide Therapies?. Frontiers in Oncology, 2013, 3, 215.	1.3	51
87	Energy Dependence of Gold Nanoparticle Radiosensitization in Plasmid DNA. Journal of Physical Chemistry C, 2011, 115, 20160-20167.	1.5	50
88	A mechanistic study of gold nanoparticle radiosensitisation using targeted microbeam irradiation. Scientific Reports, 2017, 7, 44752.	1.6	50
89	A general mechanistic model enables predictions of the biological effectiveness of different qualities of radiation. Scientific Reports, 2017, 7, 10790.	1.6	50
90	A New Standard DNA Damage (SDD) Data Format. Radiation Research, 2018, 191, 76.	0.7	49

#	Article	IF	CITATIONS
91	Rates for Repair of pBR 322 DNA Radicals by Thiols as Measured by the Gas Explosion Technique: Evidence that Counter-ion Condensation and Co-ion Depletion are Significant at Physiological Ionic Strength. International Journal of Radiation Biology, 1991, 59, 901-917.	1.0	48
92	Effective Suppression of Bystander Effects by DMSO Treatment of Irradiated CHO Cells. Journal of Radiation Research, 2007, 48, 327-333.	0.8	48
93	Small animal image-guided radiotherapy: status, considerations and potential for translational impact. British Journal of Radiology, 2015, 88, 20140634.	1.0	48
94	Targeted Alpha Therapy: Current Clinical Applications. Cancer Biotherapy and Radiopharmaceuticals, 2020, 35, 404-417.	0.7	48
95	Mechanistic Modelling of Radiation Responses. Cancers, 2019, 11, 205.	1.7	47
96	DNA damage induction in dry and hydrated DNA by synchrotron radiation. Journal of Physics B: Atomic, Molecular and Optical Physics, 1999, 32, 2753-2761.	0.6	46
97	Bystander Signalling: Exploring Clinical Relevance Through New Approaches and New Models. Clinical Oncology, 2013, 25, 586-592.	0.6	46
98	LET-weighted doses effectively reduce biological variability in proton radiotherapy planning. Physics in Medicine and Biology, 2018, 63, 225009.	1.6	46
99	Genomic Instability in Human Lymphocytes Irradiated with Individual Charged Particles: Involvement of Tumor Necrosis Factor α in Irradiated Cells but not Bystander Cells. Radiation Research, 2005, 163, 183-190.	0.7	45
100	A model for radiation-induced bystander effects, with allowance for spatial position and the effects of cell turnover. Journal of Theoretical Biology, 2005, 232, 329-338.	0.8	44
101	Concise Review: Stem Cell Effects in Radiation Risk. Stem Cells, 2011, 29, 1315-1321.	1.4	44
102	DNA Damage Responses following Exposure to Modulated Radiation Fields. PLoS ONE, 2012, 7, e43326.	1.1	44
103	Multidisciplinary European Low Dose Initiative (MELODI): strategic research agenda for low dose radiation risk research. Radiation and Environmental Biophysics, 2018, 57, 5-15.	0.6	44
104	Investigation of dose-rate effects and cell-cycle distribution under protracted exposure to ionizing radiation for various dose-rates. Scientific Reports, 2018, 8, 8287.	1.6	44
105	Evidence for Induction of DNA Double-Strand Breaks at Paired Radical Sites. Radiation Research, 1993, 134, 102.	0.7	43
106	Gamma ray-induced bystander effect in tumour glioblastoma cells: a specific study on cell survival, cytokine release and cytokine receptors. Radiation Protection Dosimetry, 2006, 122, 271-274.	0.4	43
107	Dose, dose-rate and field size effects on cell survival following exposure to non-uniform radiation fields. Physics in Medicine and Biology, 2012, 57, 3197-3206.	1.6	43
108	Immune modulation in advanced radiotherapies: Targeting out-of-field effects. Cancer Letters, 2015, 368, 246-251.	3.2	43

#	Article	IF	CITATIONS
109	Computed Tomography-based Radiomics for Risk Stratification in Prostate Cancer. International Journal of Radiation Oncology Biology Physics, 2019, 105, 448-456.	0.4	41
110	What role for DNA damage and repair in the bystander response?. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2006, 597, 1-4.	0.4	40
111	Microsatellite analysis for determination of the mutagenicity of extremely low-frequency electromagnetic fields and ionising radiation in vitro. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2007, 626, 34-41.	0.9	40
112	Deficiencies of Double-Strand Break Repair Factors and Effects on Mutagenesis in Directly Î ³ -Irradiated and Medium-Mediated Bystander Human Lymphoblastoid Cells. Radiation Research, 2008, 169, 197-206.	0.7	40
113	Microbeam Studies of the Bystander Response. Journal of Radiation Research, 2009, 50, A1-A6.	0.8	40
114	Preclinical evaluation of gold-DTDTPA nanoparticles as theranostic agents in prostate cancer radiotherapy. Nanomedicine, 2016, 11, 2035-2047.	1.7	40
115	BRCA1, FANCD2 and Chk1 are potential molecular targets for the modulation of a radiation-induced DNA damage response in bystander cells. Cancer Letters, 2015, 356, 454-461.	3.2	39
116	Robustness of differential gene expression analysis of RNA-seq. Computational and Structural Biotechnology Journal, 2021, 19, 3470-3481.	1.9	39
117	Measurement of DNA Damage and Cell Killing in Chinese Hamster V79 Cells Irradiated with Aluminum Characteristic Ultrasoft X Rays. Radiation Research, 1989, 117, 489.	0.7	38
118	Assessing software upgrades, plan properties and patient geometry using intensity modulated radiation therapy (IMRT) complexity metrics. Medical Physics, 2011, 38, 2027-2034.	1.6	38
119	An <i>in vitro</i> study of the radiobiological effects of flattening filter free radiotherapy treatments. Physics in Medicine and Biology, 2013, 58, N83-N94.	1.6	38
120	Histone H2AX Phosphorylation in Normal Human Cells Irradiated with Focused Ultrasoft X Rays: Evidence for Chromatin Movement during Repair. Radiation Research, 2006, 166, 31-38.	0.7	37
121	DNA DSB Repair Dynamics following Irradiation with Laser-Driven Protons at Ultra-High Dose Rates. Scientific Reports, 2019, 9, 4471.	1.6	37
122	Protein disulphide isomerase as a target for nanoparticle-mediated sensitisation of cancer cells to radiation. Nanotechnology, 2016, 27, 215101.	1.3	36
123	A Computational Model of Cellular Response to Modulated Radiation Fields. International Journal of Radiation Oncology Biology Physics, 2012, 84, 250-256.	0.4	35
124	The role of higher-order chromatin structure in the yield and distribution of DNA double-strand breaks in cells irradiated with X-rays or α-particles. International Journal of Radiation Biology, 2000, 76, 1085-1093.	1.0	34
125	A Comparison of the Chemical Repair Rates of Free Radical Precursors of DNA Damage and Cell Killing in Chinese Hamster V79 Cells. International Journal of Radiation Biology, 1992, 61, 721-728.	1.0	33
126	The radiobiology of laser-driven particle beams: focus on sub-lethal responses of normal human cells. Journal of Instrumentation, 2017, 12, C03084-C03084.	0.5	33

#	Article	IF	CITATIONS
127	PTEN deficiency promotes macrophage infiltration and hypersensitivity of prostate cancer to IAP antagonist/radiation combination therapy. Oncotarget, 2016, 7, 7885-7898.	0.8	33
128	Ionizing radiation-induced bystander mutagenesis and adaptation: Quantitative and temporal aspects. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2009, 671, 20-25.	0.4	32
129	A scanning focussed vertical ion nanobeam: A new UK facility for cell irradiation and analysis. Nuclear Instruments & Methods in Physics Research B, 2007, 260, 97-100.	0.6	31
130	Identification of RBCK1 as a novel regulator of FKBPL: implications for tumor growth and response to tamoxifen. Oncogene, 2014, 33, 3441-3450.	2.6	31
131	Quantification of radiation induced DNA double-strand breaks in human fibroblasts by PFGE: testing the applicability of random breakage models. International Journal of Radiation Biology, 2002, 78, 375-388.	1.0	30
132	Radiation-Induced Bystander Effects. Strahlentherapie Und Onkologie, 2003, 179, 69-77.	1.0	30
133	Inhibition of ataxia telangiectasia related-3 (ATR) improves therapeutic index in preclinical models of non-small cell lung cancer (NSCLC) radiotherapy. Radiotherapy and Oncology, 2017, 124, 475-481.	0.3	30
134	Small field dosimetry for the small animal radiotherapy research platform (SARRP). Radiation Oncology, 2017, 12, 204.	1.2	30
135	Radiobiology Experiments With Ultra-high Dose Rate Laser-Driven Protons: Methodology and State-of-the-Art. Frontiers in Physics, 2021, 9, .	1.0	30
136	An arrangement for irradiating cultured mammalian cells with aluminium characteristic ultrasoft X-rays. Physics in Medicine and Biology, 1987, 32, 1615-1626.	1.6	29
137	Investigating the cellular effects of isolated radiation tracks using microbeam techniques. Advances in Space Research, 2002, 30, 871-876.	1.2	29
138	A study of the biological effects of modulated 6 MV radiation fields. Physics in Medicine and Biology, 2010, 55, 1607-1618.	1.6	29
139	The impact of microbeams in radiation biology. Nuclear Instruments & Methods in Physics Research B, 2001, 181, 426-430.	0.6	28
140	Estrogen enhanced cell-cell signalling in breast cancer cells exposed to targeted irradiation. BMC Cancer, 2008, 8, 184.	1.1	28
141	Using the Proton Energy Spectrum and Microdosimetry to Model Proton Relative Biological Effectiveness. International Journal of Radiation Oncology Biology Physics, 2019, 104, 316-324.	0.4	28
142	The design and application of ion microbeams for irradiating living cells and tissues. Nuclear Instruments & Methods in Physics Research B, 2003, 210, 302-307.	0.6	27
143	Radiation induced bystander signals are independent of DNA damage and DNA repair capacity of the irradiated cells. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2007, 619, 134-138.	0.4	27
144	Genomic instability after targeted irradiation of human lymphocytes: Evidence for inter-individual differences under bystander conditions. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2010, 688, 91-94.	0.4	27

#	Article	IF	CITATIONS
145	Microbeam evolution: from single cell irradiation to pre-clinical studies. International Journal of Radiation Biology, 2018, 94, 708-718.	1.0	27
146	A multiple-radical model for radiation action on DNA and the dependence of OER on LET. International Journal of Radiation Biology, 1996, 69, 351-358.	1.0	26
147	Critical energies for ssb and dsb induction in plasmid DNA by vacuum-UV photons: an arrangement for irradiating dry or hydrated DNA with monochromatic photons. International Journal of Radiation Biology, 2000, 76, 763-771.	1.0	26
148	Microbeams in radiation biology: review and critical comparison. Radiation Protection Dosimetry, 2011, 143, 335-339.	0.4	26
149	Combined Analysis of Gamma-H2AX/53BP1 Foci and Caspase Activation in Lymphocyte Subsets Detects Recent and More Remote Radiation Exposures. Radiation Research, 2013, 180, 603-609.	0.7	26
150	Low-dose radiation-induced risk in spermatogenesis. International Journal of Radiation Biology, 2017, 93, 1291-1298.	1.0	26
151	Cell Survival Responses after Exposure to Modulated Radiation Fields. Radiation Research, 2012, 177, 44-51.	0.7	25
152	Down-regulation of PERK enhances resistance to ionizing radiation. Biochemical and Biophysical Research Communications, 2013, 441, 31-35.	1.0	25
153	Low dose effects of ionizing radiation on normal tissue stem cells. Mutation Research - Reviews in Mutation Research, 2014, 761, 6-14.	2.4	25
154	Two approaches for irradiating cells individually: a charged-particle microbeam and a soft X-ray microprobe. Nuclear Instruments & Methods in Physics Research B, 1997, 130, 270-274.	0.6	24
155	Radiation microbeams as spatial and temporal probes of subcellular and tissue response. Mutation Research - Reviews in Mutation Research, 2010, 704, 68-77.	2.4	24
156	Temporal characterization and <i>in vitro</i> comparison of cell survival following the delivery of 3D-conformal, intensity-modulated radiation therapy (IMRT) and volumetric modulated arc therapy (VMAT). Physics in Medicine and Biology, 2011, 56, 2445-2457.	1.6	24
157	<i>In-vitro</i> investigation of out-of-field cell survival following the delivery of conformal, intensity-modulated radiation therapy (IMRT) and volumetric modulated arc therapy (VMAT) plans. Physics in Medicine and Biology, 2012, 57, 6635-6645.	1.6	24
158	History and current perspectives on the biological effects of high-dose spatial fractionation and high dose-rate approaches: GRID, Microbeam & FLASH radiotherapy. British Journal of Radiology, 2020, 93, 20200217.	1.0	24
159	Impact of superparamagnetic iron oxide nanoparticles on in vitro and in vivo radiosensitisation of cancer cells. Radiation Oncology, 2021, 16, 104.	1.2	24
160	Role of Charge in the Radioprotection ofE. Coliby Thiols. International Journal of Radiation Biology, 1995, 67, 393-401.	1.0	23
161	Real-time imaging of novel spatial and temporal responses to photodynamic stress. Free Radical Biology and Medicine, 2009, 47, 283-290.	1.3	23
162	DNA and chromosomal damage in response to intermittent extremely low-frequency magnetic fields. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2009, 672, 82-89.	0.9	23

#	Article	IF	CITATIONS
163	Single ion actions: The induction of micronuclei in V79 cells exposed to individual protons. Advances in Space Research, 2000, 25, 2095-2101.	1.2	22
164	The Production of Single Strand and Double Strand Breaks in DNA in Aqueous Solution by Vacuum UV Photons Below 10 ev. Radiation Protection Dosimetry, 2002, 99, 147-149.	0.4	22
165	Action Spectra for Single- and Double-strand Break Induction in Plasmid DNA: Studies Using Synchrotron Radiation. International Journal of Radiation Biology, 1994, 66, 569-572.	1.0	21
166	Quantification of DNA damage by PFGE: development of an analytical approach to correct for the background distribution. International Journal of Radiation Biology, 2000, 76, 741-748.	1.0	21
167	A Monte Carlo Model of DNA Double-Strand Break Clustering and Rejoining Kinetics for the Analysis of Pulsed-Field Gel Electrophoresis Data. Radiation Research, 2004, 162, 453-463.	0.7	21
168	Antiproton induced DNA damage: proton like in flight, carbon-ion like near rest. Scientific Reports, 2013, 3, 1770.	1.6	21
169	FLIP: A Targetable Mediator of Resistance to Radiation in Non–Small Cell Lung Cancer. Molecular Cancer Therapeutics, 2016, 15, 2432-2441.	1.9	21
170	Implications of Intercellular Signaling for Radiation Therapy: A Theoretical Dose-Planning Study. International Journal of Radiation Oncology Biology Physics, 2013, 87, 1148-1154.	0.4	20
171	High-precision microbeam radiotherapy reveals testicular tissue-sparing effects for male fertility preservation. Scientific Reports, 2019, 9, 12618.	1.6	20
172	New insights into the cellular response to radiation using microbeams. Nuclear Instruments & Methods in Physics Research B, 2005, 231, 189-194.	0.6	19
173	LhARA: The Laser-hybrid Accelerator for Radiobiological Applications. Frontiers in Physics, 2020, 8, .	1.0	19
174	The Roles of HIF-1α in Radiosensitivity and Radiation-Induced Bystander Effects Under Hypoxia. Frontiers in Cell and Developmental Biology, 2021, 9, 637454.	1.8	19
175	A Mechanistic DNA Repair and Survival Model (Medras): Applications to Intrinsic Radiosensitivity, Relative Biological Effectiveness and Dose-Rate. Frontiers in Oncology, 2021, 11, 689112.	1.3	19
176	The Role of Non-protein Sulphydryls in Determining the Chemical Repair Rates of Free Radical Precursors of DNA Damage and Cell Killing in Chinese Hamster V79 Cells. International Journal of Radiation Biology, 1992, 62, 297-306.	1.0	18
177	Further Evidence for Double-Strand Breaks Originating from a Paired Radical Precursor from Studies of Oxygen Fixation Processes. Radiation Research, 1999, 151, 635.	0.7	18
178	Double Strand Break Rejoining after Irradiation of Human Fibroblasts with X Rays or a Particles: PFGE Studies and Numerical Models. Radiation Protection Dosimetry, 2002, 99, 133-136.	0.4	18
179	Dose response and kinetics of foci disappearance following exposure to high- and low-LET ionizing radiation. International Journal of Radiation Biology, 2009, 85, 872-882.	1.0	18
180	Pro-inflammatory Signaling in a 3D Organotypic Skin Model after Low LET Irradiation—NF-κB, COX-2 Activation, and Impact on Cell Differentiation. Frontiers in Immunology, 2017, 8, 82.	2.2	18

#	Article	IF	CITATIONS
181	The application of charged-particle microbeams in radiobiology. Nuclear Instruments & Methods in Physics Research B, 2002, 188, 49-54.	0.6	17
182	Comment on â€~Implications on clinical scenario of gold nanoparticle radiosensitization in regards to photon energy, nanoparticle size, concentration and location'. Physics in Medicine and Biology, 2012, 57, 287-290.	1.6	17
183	Alpha particles induce pan-nuclear phosphorylation of H2AX in primary human lymphocytes mediated through ATM. Biochimica Et Biophysica Acta - Molecular Cell Research, 2015, 1853, 2199-2206.	1.9	17
184	Preclinical Evaluation of Dose-Volume Effects and Lung Toxicity Occurring In and Out-of-Field. International Journal of Radiation Oncology Biology Physics, 2019, 103, 1231-1240.	0.4	17
185	Evidence for a hypoxic fixation reaction leading to the induction of ssb and dsb in irradiated DNA. International Journal of Radiation Biology, 1998, 74, 53-59.	1.0	16
186	Editorial—Non-DNA targeted effects. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2010, 687, 1-2.	0.4	16
187	Radiation-Induced Bystander and Adaptive Responses in Cell and Tissue Models. Dose-Response, 2006, 4, dose-response.0.	0.7	15
188	Double strand break formation as a response to X-ray and targeted proton-irradiation. Nuclear Instruments & Methods in Physics Research B, 2007, 260, 159-163.	0.6	15
189	Relative biological effectiveness (RBE) and out-of-field cell survival responses to passive scattering and pencil beam scanning proton beam deliveries. Physics in Medicine and Biology, 2012, 57, 6671-6680.	1.6	15
190	Investigating the Potential Impact of Four-dimensional Computed Tomography (4DCT) on Toxicity, Outcomes and Dose Escalation for Radical Lung Cancer Radiotherapy. Clinical Oncology, 2014, 26, 142-150.	0.6	15
191	Cellular signalling effects in high precision radiotherapy. Physics in Medicine and Biology, 2015, 60, 4551-4564.	1.6	15
192	Radioprotection of targeted and bystander cells by methylproamine. Strahlentherapie Und Onkologie, 2015, 191, 248-255.	1.0	15
193	Application of an <i>Ex Vivo</i> Tissue Model to Investigate Radiobiological Effects on Spermatogenesis. Radiation Research, 2018, 189, 661-667.	0.7	15
194	Preclinical models of radiation-induced lung damage: challenges and opportunities for small animal radiotherapy. British Journal of Radiology, 2019, 92, 20180473.	1.0	15
195	The role of PTEN as a cancer biomarker. Oncoscience, 2016, 3, 54-55.	0.9	15
196	Radiation-induced genomic instability in repair deficient mutants of Chinese hamster cells. International Journal of Radiation Biology, 2005, 81, 929-936.	1.0	14
197	KNK437, abrogates hypoxia-induced radioresistance by dual targeting of the AKT and HIF-1α survival pathways. Biochemical and Biophysical Research Communications, 2012, 421, 538-543.	1.0	14
198	Modelling responses to spatially fractionated radiation fields using preclinical image-guided radiotherapy. British Journal of Radiology, 2017, 90, 20160485.	1.0	14

#	ARTICLE	IF	CITATIONS
199	Assessment of DNA doubleâ€strand breaks induced by intravascular iodinated contrast media following <i>in vitro</i> irradiation and <i>in vivo,</i> during paediatric cardiac catheterization. Contrast Media and Molecular Imaging, 2016, 11, 122-129.	0.4	13
200	Fiducial markers visibility and artefacts in prostate cancer radiotherapy multi-modality imaging. Radiation Oncology, 2019, 14, 237.	1.2	13
201	Upgrading of the Gray Laboratory Soft X Ray Microprobe with V79 Survival Measurements Following Irradiation of One or All Cells with a Ck X Ray Beam of Different Size. Radiation Protection Dosimetry, 2002, 99, 287-288.	0.4	12
202	The use of radiation microbeams to investigate the bystander effect in cells and tissues. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2007, 580, 446-450.	0.7	12
203	The use of microbeams to investigate radiation damage in living cells. Applied Radiation and Isotopes, 2009, 67, 436-439.	0.7	12
204	An overview of current practice in external beam radiation oncology with consideration to potential benefits and challenges for nanotechnology. Cancer Nanotechnology, 2017, 8, 3.	1.9	12
205	Non-uniform radiation-induced biological responses at the tissue level involved in the health risk of environmental radiation: a radiobiological hypothesis. Environmental Health, 2018, 17, 93.	1.7	12
206	Recommendations for clinical translation of nanoparticle-enhanced radiotherapy. British Journal of Radiology, 2018, 91, 20180325.	1.0	12
207	Intensity Modulated Radiation Fields Induce Protective Effects and Reduce Importance of Dose-Rate Effects. Scientific Reports, 2019, 9, 9483.	1.6	12
208	Mechanisms of DNA Damage Response to Targeted Irradiation in Organotypic 3D Skin Cultures. PLoS ONE, 2014, 9, e86092.	1.1	12
209	Akt/mTOR mediated induction of bystander effect signaling in a nucleus independent manner in irradiated human lung adenocarcinoma epithelial cells. Oncotarget, 2017, 8, 18010-18020.	0.8	12
210	Dose response and kinetics of foci disappearance following exposure to high- and low-LET ionizing radiation. International Journal of Radiation Biology, 2009, 85, 872-882.	1.0	11
211	A Brief Overview of the Preclinical and Clinical Radiobiology of Microbeam Radiotherapy. Clinical Oncology, 2021, 33, 705-712.	0.6	11
212	A scoping review of small animal image-guided radiotherapy research: Advances, impact and future opportunities in translational radiobiology. Clinical and Translational Radiation Oncology, 2022, 34, 112-119.	0.9	11
213	Non-linear Dose—effect Curve for DNA Double-strand Breaks by Low LET Radiation: The Effect of Eluting Buffer Composition on the Measurement of Breaks by the Filter Elution Technique. International Journal of Radiation Biology, 1989, 56, 943-950.	1.0	10
214	State of the art in research into the risk of low dose radiation exposure—findings of the fourth MELODI workshop. Journal of Radiological Protection, 2013, 33, 589-603.	0.6	10
215	Time and Cell Type Dependency of Survival Responses in Co-cultured Tumor and Fibroblast Cells after Exposure to Modulated Radiation Fields. Radiation Research, 2015, 183, 656-664.	0.7	10
216	Mitochondria as a target for radiosensitisation by gold nanoparticles. Journal of Physics: Conference Series, 2017, 777, 012008.	0.3	10

#	Article	IF	CITATIONS
217	The Impact of Hypoxia on Out-of-Field Cell Survival after Exposure to Modulated Radiation Fields. Radiation Research, 2017, 188, 716-724.	0.7	10
218	An Improved Method for the Treatment of Data from DNA Strand Break Measurements Using Filter Elution Techniques with an Internal Standard. International Journal of Radiation Biology, 1989, 55, 323-330.	1.0	9
219	Spatiotemporal investigations of DNA damage repair using microbeams. Radiation Protection Dosimetry, 2011, 143, 340-343.	0.4	9
220	Time-resolved dosimetric verification of respiratory-gated radiotherapy exposures using a high-resolution 2D ionisation chamber array. Physics in Medicine and Biology, 2016, 61, 5529-5546.	1.6	9
221	Precision Radiotherapy and Radiation Risk Assessment: How Do We Overcome Radiogenomic Diversity?. Tohoku Journal of Experimental Medicine, 2019, 247, 223-235.	0.5	9
222	Modulating the unfolded protein response with ONC201 to impact on radiation response in prostate cancer cells. Scientific Reports, 2021, 11, 4252.	1.6	9
223	Evaluation of a Novel Liquid Fiducial Marker, BioXmark®, for Small Animal Image-Guided Radiotherapy Applications. Cancers, 2020, 12, 1276.	1.7	9
224	The relationship between the RBE of alpha particles and the radiosensitivity of different mutations of Chinese hamster cells. Radiation and Environmental Biophysics, 2001, 40, 243-248.	0.6	8
225	Relative Biological Effect/Linear Energy Transfer in Proton Beam Therapy: A Primer. Clinical Oncology, 2019, 31, 809-812.	0.6	8
226	Mechanistic Modeling of Radium-223 Treatment of Bone Metastases. International Journal of Radiation Oncology Biology Physics, 2019, 103, 1221-1230.	0.4	8
227	Clinical and functional characterization of CXCR1/CXCR2 biology in the relapse and radiotherapy resistance of primary PTEN-deficient prostate carcinoma. NAR Cancer, 2020, 2, zcaa012.	1.6	8
228	Radical Multiplicity in Radiation-Induced DNA Strand Breaks: Implications for their Chemical Modification. , 1991, , 333-346.		8
229	Dose response and kinetics of foci disappearance following exposure to high- and low-LET ionizing radiation. International Journal of Radiation Biology, 2009, 85, 872-82.	1.0	8
230	A comparison of the radiosensitivity of relaxed and supercoiled plasmid DNA. International Journal of Radiation Biology, 1999, 75, 83-90.	1.0	7
231	VUV irradiation studies of plasmid DNA in aqueous solution. Journal of Physics: Conference Series, 2008, 101, 012020.	0.3	7
232	Inverse planned constant dose rate volumetric modulated arc therapy (VMAT) as an efficient alternative to five-field intensity modulated radiation therapy (IMRT) for prostate. Journal of Radiotherapy in Practice, 2014, 13, 68-78.	0.2	7
233	Impact of fractionation on out-of-field survival and DNA damage responses following exposure to intensity modulated radiation fields. Physics in Medicine and Biology, 2016, 61, 515-526.	1.6	7
234	Acute radiation impacts contractility of guinea-pig bladder strips affecting mucosal-detrusor interactions. PLoS ONE, 2018, 13, e0193923.	1.1	7

#	Article	IF	CITATIONS
235	Diversity of ATM gene variants: a population-based genome data analysis for precision medicine. Human Genomics, 2019, 13, 38.	1.4	7
236	Spatially Fractionated Microbeam Analysis of Tissue-sparing Effect for Spermatogenesis. Radiation Research, 2020, 194, 698-706.	0.7	7
237	Measurement of DNA damage and cell killing in Chinese hamster V79 cells irradiated with aluminum characteristic ultrasoft X rays. Radiation Research, 1989, 117, 489-99.	0.7	7
238	Increased protein ADPribosylation in HeLa cells exposed to the anti-cancer drug methotrexate. Biochimica Et Biophysica Acta - Molecular Cell Research, 1986, 887, 13-22.	1.9	6
239	Prostate cancer treated with brachytherapy; an exploratory study of dose-dependent biomarkers and quality of life. Radiation Oncology, 2017, 12, 53.	1.2	6
240	Radiobiological Implications of Fukushima Nuclear Accident for Personalized Medical Approach. Tohoku Journal of Experimental Medicine, 2017, 242, 77-81.	0.5	6
241	X-ray Microbeams for Radiobiological Studies: Current Status and Future Challenges. Progress in Electromagnetics Research Symposium: [proceedings] Progress in Electromagnetics Research Symposium, 2010, 6, 207-211.	0.4	6
242	Differential modulation of a radiation-induced bystander effect in glioblastoma cells by pifithrin-α and wortmannin. Nuclear Instruments & Methods in Physics Research B, 2010, 268, 627-631.	0.6	5
243	Increased susceptibility to delayed genetic effects of low dose X-irradiation in DNA repair deficient cells. International Journal of Radiation Biology, 2013, 89, 295-300.	1.0	5
244	Investigation into the radiobiological consequences of pre-treatment verification imaging with megavoltage X-rays in radiotherapy. British Journal of Radiology, 2014, 87, 20130781.	1.0	5
245	Conventional in vivo irradiation procedures are insufficient to accurately determine tumor responses to non-uniform radiation fields. International Journal of Radiation Biology, 2015, 91, 257-261.	1.0	5
246	Delivering a researchâ€enabled multistakeholder partnership for enhanced patient care at a population level: The Northern Ireland Comprehensive Cancer Program. Cancer, 2016, 122, 664-673.	2.0	5
247	The Tissue-Sparing Effect of Spatially Fractionated X-rays for Maintaining Spermatogenesis: A Radiobiological Approach for the Preservation of Male Fertility after Radiotherapy. Journal of Clinical Medicine, 2020, 9, 1089.	1.0	5
248	TOPAS a tool to evaluate the impact of cell geometry and radionuclide on alpha particle therapy. Biomedical Physics and Engineering Express, 2021, 7, 035008.	0.6	5
249	Toxicity and Efficacy of Concurrent Androgen Deprivation Therapy, Pelvic Radiotherapy, and Radium-223 in Patients with <i>De Novo</i> Metastatic Hormone-Sensitive Prostate Cancer. Clinical Cancer Research, 2021, 27, 4549-4556.	3.2	5
250	Dual effects of radiation bystander signaling in urothelial cancer: purinergic-activation of apoptosis attenuates survival of urothelial cancer and normal urothelial cells. Oncotarget, 2017, 8, 97331-97343.	0.8	5
251	Golgi Phosphoprotein 3 Confers Radioresistance via Stabilizing EGFR in Lung Adenocarcinoma. International Journal of Radiation Oncology Biology Physics, 2022, 112, 1216-1228.	0.4	5
252	Dose estimation after a mixed field exposure: Radium-223 and intensity modulated radiotherapy. Nuclear Medicine and Biology, 2022, 106-107, 10-20.	0.3	5

#	Article	IF	CITATIONS
253	Evaluating Iodine-125 DNA Damage Benchmarks of Monte Carlo DNA Damage Models. Cancers, 2022, 14, 463.	1.7	5
254	A Brief Overview of Radiation-Induced Effects on Spermatogenesis and Oncofertility. Cancers, 2022, 14, 805.	1.7	5
255	Evidence for induction of DNA double-strand breaks at paired radical sites. Radiation Research, 1993, 134, 102-6.	0.7	5
256	Development of a portable hypoxia chamber for ultra-high dose rate laser-driven proton radiobiology applications. Radiation Oncology, 2022, 17, 77.	1.2	5
257	New insights on radiation-induced bystander signalling and its relationship to DNA repair. International Congress Series, 2007, 1299, 121-127.	0.2	4
258	Gold Nanoparticles Cause Radiosensitization in Prostate Cancer Cell Lines in Hypoxic Conditions. International Journal of Radiation Oncology Biology Physics, 2008, 72, S715-S716.	0.4	4
259	Experimental setup and first measurement of DNA damage induced along and around an antiproton beam. European Physical Journal D, 2010, 60, 209-214.	0.6	4
260	Investigating the influence of respiratory motion on the radiation induced bystander effect in modulated radiotherapy. Physics in Medicine and Biology, 2013, 58, 8311-8322.	1.6	4
261	Opportunities for research in molecular radiotherapy. British Journal of Radiology, 2017, 90, 20160921.	1.0	4
262	Removal of scatter radiation in paediatric cardiac catheterisation: a randomised controlled clinical trial. Journal of Radiological Protection, 2017, 37, 742-760.	0.6	4
263	Clinically Actionable Insights into Initial and Matched Recurrent Glioblastomas to Inform Novel Treatment Approaches. Journal of Oncology, 2019, 2019, 1-14.	0.6	4
264	Pushing the frontiers of radiobiology: A special feature in memory of Sir Oliver Scott and Professor Jack Fowler. British Journal of Radiology, 2019, 92, 20189005.	1.0	4
265	Oxygen enhancement ratios of cancer cells after exposure to intensity modulated x-ray fields: DNA damage and cell survival. Physics in Medicine and Biology, 2021, 66, 075014.	1.6	4
266	Characterization of a custom-made 241Am alpha-source for radiobiological studies. Applied Radiation and Isotopes, 2021, 177, 109931.	0.7	4
267	Using Process Algebra to Model Radiation Induced Bystander Effects. Lecture Notes in Computer Science, 2014, , 196-210.	1.0	4
268	Effects of Gadolinium MRI Contrast Agents on DNA Damage and Cell Survival when Used in Combination with Radiation. Radiation Research, 2020, 194, 298.	0.7	4
269	Investigating spatial fractionation and radiation induced bystander effects: a mathematical modelling approach. Physics in Medicine and Biology, 2021, 66, 225007.	1.6	4
270	Development of a novel experimental model to investigate radiobiological implications of respiratory motion in advanced radiotherapy. Physics in Medicine and Biology, 2012, 57, N411-N420.	1.6	3

#	Article	IF	CITATIONS
271	First results on cell irradiation with laser-driven protons on the TARANIS system. , 2013, , .		3
272	Small animal image-guided radiotherapy. British Journal of Radiology, 2017, 90, 20160905.	1.0	3
273	Impact of Variable RNA-Sequencing Depth on Gene Expression Signatures and Target Compound Robustness: Case Study Examining Brain Tumor (Glioma) Disease Progression. JCO Precision Oncology, 2018, 2, 1-17.	1.5	3
274	Further evidence for double-strand breaks originating from a paired radical precursor from studies of oxygen fixation processes. Radiation Research, 1999, 151, 635-41.	0.7	3
275	<title>Development and application of a focused ultrasoft x-ray probe for radiobiological applications</title> .,2001,,.		2
276	Status of Charged Particle Microbeams for Radiation Biology. Journal of Physics: Conference Series, 2007, 58, 62-67.	0.3	2
277	ATR-dependent bystander effects in nontargeted cells. International Journal of Low Radiation, 2008, 5, 22.	0.1	2
278	Substrate evaluation for a microbeam endstation using unstained cell imaging. Applied Radiation and Isotopes, 2009, 67, 460-463.	0.7	2
279	Radiation responses of stem cells: targeted and non-targeted effects. Radiation Protection Dosimetry, 2015, 166, 110-117.	0.4	2
280	Updated understanding of <i>WRN</i> variants using the Japanese wholeâ€genome reference panel 3.5KJPNv2. Geriatrics and Gerontology International, 2019, 19, 961-962.	0.7	2
281	A novel tool for improving the interpretation of isotope bone scans in metastatic prostate cancer. British Journal of Radiology, 2020, 93, 20200775.	1.0	2
282	ATM Kinase Inhibition Preferentially Sensitises PTEN-Deficient Prostate Tumour Cells to Ionising Radiation. Cancers, 2021, 13, 79.	1.7	2
283	No Intercellular Regulation of the Cell Cycle among Human Cervical Carcinoma HeLa Cells Expressing Fluorescent Ubiquitination-Based Cell-Cycle Indicators in Modulated Radiation Fields. International Journal of Molecular Sciences, 2021, 22, 12785.	1.8	2
284	Workshop Report. International Journal of Radiation Biology, 1990, 58, 391-396.	1.0	1
285	Spatio-temporal analysis of DNA damage repair using the X-ray microbeam. European Physical Journal D, 2010, 60, 157-161.	0.6	1
286	BJR radiobiology special feature. British Journal of Radiology, 2014, 87, 20140074.	1.0	1
287	Editorial—nanoparticles for diagnostic imaging and radiotherapy. British Journal of Radiology, 2015, 88, 20150692.	1.0	1
288	New Research in Ionizing Radiation andÂNanoparticles: The ARGENT Project. , 2017, , 379-434.		1

#	Article	IF	CITATIONS
289	NUQA: Estimating Cancer Spatial and Temporal Heterogeneity and Evolution through Alignment-Free Methods. Molecular Biology and Evolution, 2019, 36, 2883-2889.	3.5	1
290	Advances in Radiation Biology – Highlights from the 16th ICRR special feature: introductory editorial. British Journal of Radiology, 2020, 93, 20209006.	1.0	1
291	The Lethality of Radiation-Induced DNA Double-Strand Breaks for Radiations of Differing LET. , 1991, , 103-104.		1
292	Bystander Effects and Radionuclide Therapy. , 2008, , 311-319.		1
293	Interaction of hydrogen peroxide and ionizing-radiation-induced damage. BJR Supplement, 1992, 24, 28-31.	0.1	1
294	A study of DNA fragmentation patterns in cells irradiated with charged particles: evidence for non-random distributions. Physica Medica, 1998, 14 Suppl 1, 20-3.	0.4	1
295	Using Al-Based Evolutionary Algorithms to Elucidate Adult Brain Tumor (Glioma) Etiology Associated with IDH1 for Therapeutic Target Identification. Current Issues in Molecular Biology, 2022, 44, 2982-3000.	1.0	1
296	Cytoxicity of high dose methotrexate is not associated with uracil misincorporation into DNA. Biochemical Society Transactions, 1986, 14, 740-741.	1.6	0
297	Continuously tunable high-flux VUV beamline constructed on a picosecond KrF laser plasma source. , 1997, , .		0
298	The European Masters of Science Course in Radiation Biology. International Congress Series, 2003, 1258, 213-217.	0.2	0
299	263 oral TEMPORAL CHARACTERISATION AND IN-VITRO COMPARISON OF CELL SURVIVAL FOLLOWING DELIVERY OF 3D-CONFORMAL, INTENSITY MODULATED RADIATION THERAPY (IMRT) AND VOLUMETRIC MODULATED ARC THERAPY (VMAT) Radiotherapy and Oncology, 2011, 99, S104.	0.3	0
300	Biological cell irradiation at ultrahigh dose rate employing laser driven protons. , 2012, , .		0
301	Radiobiology at ultra-high dose rates employing laser-driven ions. Proceedings of SPIE, 2013, , .	0.8	0
302	Progress in Laser-Driven Ion Acceleration towards Applications in Radiotherapy. , 2014, , .		0
303	Techniques for performing treatment planning calculations on varian CBCT images. Physica Medica, 2016, 32, 950.	0.4	0
304	EP-1751: Time-resolved analysis of Varian RPM-gated exposures on three versions of Truebeam linac. Radiotherapy and Oncology, 2016, 119, S820.	0.3	0
305	Nothing endures but change. British Journal of Radiology, 2017, 90, 20160904.	1.0	0
306	Gene expression profiling of patient-matched initial and recurrent glioblastoma. Neuro-Oncology, 2018, 20, i15-i15.	0.6	0

#	Article	IF	CITATIONS
307	BTC1.04 Genomic profiling of IDH-wildtype and IDH-mutant initial and matched recurrent glioblastomas reveals clinically actionable mutations (e.g. BRCA1/2) and resistance signatures. Neuro-Oncology, 2018, 20, iii215-iii216.	0.6	0
308	EXPLORING ALIGNMENT-FREE SEQUENCE COMPARISON METHODS TO ELUCIDATE PATTERNS OF EVOLUTION AND HETEROGENEITY IN LONGITUDINAL GLIOMA PATIENT COHORTS. Neuro-Oncology, 2018, 20, v348-v348.	0.6	0
309	P04.46 Variable RNA sequencing depth impacts gene signatures and target compound robustness - case study examining brain tumour (glioma) disease progression. Neuro-Oncology, 2018, 20, iii289-iii289.	0.6	0
310	EP-2032 Automated Bone Scan Index (aBSI) as an Imaging Biomarker in Castration Sensitive Prostate Cancer. Radiotherapy and Oncology, 2019, 133, S1115-S1116.	0.3	0
311	OC-0407 CT-based Radiomics for Risk Stratification in Prostate Cancer. Radiotherapy and Oncology, 2019, 133, S209.	0.3	0
312	Small animal image-guided radiotherapy. British Journal of Radiology, 2019, 92, .	1.0	0
313	125 years of <i>BJR</i> and radiological research: a celebration of the world's oldest radiology journal. British Journal of Radiology, 2020, 93, 20209001.	1.0	0
314	125 years of <i>BJR</i> and radiological research: reflecting on the anniversary series in celebration of the world's oldest radiology journal. British Journal of Radiology, 2021, 94, bjr.20219001.	1.0	0
315	The Gray Cancer institute X-ray microprobe and its radiobiological applications. European Physical Journal Special Topics, 2003, 104, 301-304.	0.2	0
316	Targeting Radiation at the Subcellular, Cellular and Tissue Levels: Future Strategies. , 2004, , 225-234.		0
317	Application of Microbeams to the Study of the Biological Effects of Low Dose Irradiation. , 2010, , 575-594.		0
318	Spatial and Temporal Aspects of Radiation Response in Cell and Tissue Models. Biological and Medical Physics Series, 2012, , 385-396.	0.3	0
319	Sensitivity of PTEN-deficient prostate carcinoma cells to ionizing radiation through inhibition of treatment-induced CXCL8 signaling Journal of Clinical Oncology, 2013, 31, 154-154.	0.8	0
320	Abstract C215: Sensitivity of PTEN-deficient prostate carcinoma xenografts to ionizing radiation through inhibition of treatment-induced CXCL8 signaling , 2013, , .		0
321	Cell Death Caused by the Anti-Cancer Drug Methotrexate: Does ADP-Ribosyl Transferase Have a Role to Play?. Proceedings in Life Sciences, 1985, , 327-331.	0.5	0
322	THE INDUCTION OF DNA DAMAGE BY LOW-ENERGY ELECTRONS. , 1991, , 403.		0
323	ARE SINGLE-RADICAL MODELS APPROPRIATE FOR CHEMICAL MODIFICATION OF RADIATION DAMAGE?. , 1991, , 406.		0
324	MOâ€FCâ€BRAâ€06: Material Optimisation for Nanoparticleâ€Sensitized Radiotherapy. Medical Physics, 2015, 4 3565-3566.	2, _{1.6}	0

#	Article	IF	CITATIONS
325	Abstract 2227: Effects of cathepsin S in differentiated and stem-like glioblastoma cells. , 2015, , .		0
326	Abstract 72: Therapeutic compound discovery targeting a recurrent glioblastoma (GBM) phenotype using LINCS compounds via QUADrATiC analyses. , 2016, , .		0
327	Abstract 835: Sensitivity of PTEN deficient non-small cell lung cancer to ionising radiation through inhibition of ataxia terangiectasia related 3 kinase (ATR). , 2017, , .		0
328	Abstract B035: Radio-resistance of PTEN-deficient prostate tumors is enhanced by treatment-induced chemokine signaling and is associated with biochemical recurrence and development of metastasis. , 2018, , .		0
329	The DNA Damage Response in Nontargeted Cells. , 2009, , 193-198.		0
330	10 years of open access publishing at the BIR. British Journal of Radiology, 2022, 95, 20229001.	1.0	0
331	Ionizing Radiation Therapy. , 2008, , 1567-1569.		0