Kunxi Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5430536/publications.pdf Version: 2024-02-01

		430442	414034
32	1,362	18	32
papers	citations	h-index	g-index
32	32	32	1986
all docs	docs citations	times ranked	citing authors

#	Article	lF	CITATIONS
1	"All-in-one―zwitterionic granular hydrogel bioink for stem cell spheroids production and 3D bioprinting. Chemical Engineering Journal, 2022, 430, 132713.	6.6	19
2	Microspheres powder as potential clinical auxiliary materials for combining with platelet-rich plasma to prepare cream gel towards wound treatment. Applied Materials Today, 2022, 27, 101408.	2.3	11
3	Solid multifunctional granular bioink for constructing chondroid basing on stem cell spheroids and chondrocytes. Biofabrication, 2022, 14, 035003.	3.7	9
4	A Simple and Efficient Strategy for Preparing a Cell‣pheroidâ€Based Bioink. Advanced Healthcare Materials, 2022, 11, e2200648.	3.9	13
5	Stem cell spheroids production for wound healing with a reversible porous hydrogel. Materials Today Advances, 2022, 15, 100269.	2.5	6
6	Porous scaffolds with enzyme-responsive Kartogenin release for recruiting stem cells and promoting cartilage regeneration. Chemical Engineering Journal, 2022, 447, 137454.	6.6	5
7	A bilayered scaffold with segregated hydrophilicity-hydrophobicity enables reconstruction of goat hierarchical temporomandibular joint condyle cartilage. Acta Biomaterialia, 2021, 121, 288-302.	4.1	11
8	Mussel-Inspired Bisphosphonated Injectable Nanocomposite Hydrogels with Adhesive, Self-Healing, and Osteogenic Properties for Bone Regeneration. ACS Applied Materials & Interfaces, 2021, 13, 32673-32689.	4.0	56
9	Bioink design for extrusion-based bioprinting. Applied Materials Today, 2021, 25, 101227.	2.3	15
10	Biodegradable High-Strength Hydrogels with Injectable Performance Based on Poly(<scp>I</scp> -Glutamic Acid) and Gellan Gum. ACS Biomaterials Science and Engineering, 2020, 6, 4702-4713.	2.6	20
11	Designer Hydrogel with Intelligently Switchable Stem-Cell Contact for Incubating Cartilaginous Microtissues. ACS Applied Materials & Interfaces, 2020, 12, 40163-40175.	4.0	16
12	Thermoresponsive Chitosan/DOPA-Based Hydrogel as an Injectable Therapy Approach for Tissue-Adhesion and Hemostasis. ACS Biomaterials Science and Engineering, 2020, 6, 3619-3629.	2.6	78
13	All-in-One Hydrogel Realizing Adipose-Derived Stem Cell Spheroid Production and In Vivo Injection via "Gel–Sol―Transition for Angiogenesis in Hind Limb Ischemia. ACS Applied Materials & Interfaces, 2020, 12, 11375-11387.	4.0	22
14	Stack-Based Hydrogels with Mechanical Enhancement, High Stability, Self-Healing Property, and Thermoplasticity from Poly(<scp>l</scp> -glutamic acid) and Ureido-Pyrimidinone. ACS Biomaterials Science and Engineering, 2020, 6, 1715-1726.	2.6	14
15	Biomimetic Bilayer Scaffold as an Incubator to Induce Sequential Chondrogenesis and Osteogenesis of Adipose Derived Stem Cells for Construction of Osteochondral Tissue. ACS Biomaterials Science and Engineering, 2020, 6, 3070-3080.	2.6	12
16	Poly(<scp>l</scp> â€glutamic acid)â€based micellar hydrogel with improved mechanical performance and proteins loading. Journal of Polymer Science, Part B: Polymer Physics, 2019, 57, 1115-1125.	2.4	5
17	Homologous Sodium Alginate/Chitosan-Based Scaffolds, but Contrasting Effect on Stem Cell Shape and Osteogenesis. ACS Applied Materials & Interfaces, 2018, 10, 6930-6941.	4.0	29
18	<i>In situ</i> formation of hydrophobic clusters to enhance mechanical performance of biodegradable poly(<scp>l</scp> -glutamic acid)/poly(ε-caprolactone) hydrogel towards meniscus tissue engineering. Journal of Materials Chemistry B, 2018, 6, 7822-7833.	2.9	26

Kunxi Zhang

#	Article	IF	CITATIONS
19	A tough and self-healing poly(<scp>l</scp> -glutamic acid)-based composite hydrogel for tissue engineering. Journal of Materials Chemistry B, 2018, 6, 6865-6876.	2.9	38
20	Preparation of mussel-inspired injectable hydrogels based on dual-functionalized alginate with improved adhesive, self-healing, and mechanical properties. Journal of Materials Chemistry B, 2018, 6, 6377-6390.	2.9	102
21	Functionalized Scaffold for in Situ Efficient Gene Transfection of Mesenchymal Stem Cells Spheroids toward Chondrogenesis. ACS Applied Materials & Interfaces, 2018, 10, 33993-34004.	4.0	23
22	Effects of large dimensional deformation of a porous structure on stem cell fate activated by poly(<scp> </scp> -glutamic acid)-based shape memory scaffolds. Biomaterials Science, 2018, 6, 2738-2749.	2.6	21
23	Strategy for constructing vascularized adipose units in poly(l-glutamic acid) hydrogel porous scaffold through inducing in-situ formation of ASCs spheroids. Acta Biomaterialia, 2017, 51, 246-257.	4.1	62
24	Sr-HA- <i>graft</i> -Poly(γ-benzyl- <scp>l</scp> -glutamate) Nanocomposite Microcarriers: Controllable Sr ²⁺ Release for Accelerating Osteogenenisis and Bony Nonunion Repair. Biomacromolecules, 2017, 18, 3742-3752.	2.6	26
25	Hydration of hydrogels regulates vascularization in vivo. Biomaterials Science, 2017, 5, 2251-2267.	2.6	19
26	Regeneration of hyaline-like cartilage and subchondral bone simultaneously by poly(<scp>l</scp> -glutamic acid) based osteochondral scaffolds with induced autologous adipose derived stem cells. Journal of Materials Chemistry B, 2016, 4, 2628-2645.	2.9	37
27	Injectable in situ forming poly(<scp>l</scp> -glutamic acid) hydrogels for cartilage tissue engineering. Journal of Materials Chemistry B, 2016, 4, 947-961.	2.9	78
28	Self-Healing Supramolecular Self-Assembled Hydrogels Based on Poly(<scp>l</scp> -glutamic acid). Biomacromolecules, 2015, 16, 3508-3518.	2.6	177
29	In-situ birth of MSCs multicellular spheroids in poly(l -glutamic acid)/chitosan scaffold for hyaline-like cartilage regeneration. Biomaterials, 2015, 71, 24-34.	5.7	90
30	Injectable In Situ Self-Cross-Linking Hydrogels Based on Poly(<scp>l</scp> -glutamic acid) and Alginate for Cartilage Tissue Engineering. Biomacromolecules, 2014, 15, 4495-4508.	2.6	185
31	Repair of an articular cartilage defect using adipose-derived stem cells loaded on a polyelectrolyte complex scaffold based on poly(l-glutamic acid) and chitosan. Acta Biomaterialia, 2013, 9, 7276-7288.	4.1	82
32	Fabrication of poly(l-glutamic acid)/chitosan polyelectrolyte complex porous scaffolds for tissue engineering. Journal of Materials Chemistry B, 2013, 1, 1541.	2.9	55