Alejandro Beceiro Casas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5430282/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Antimicrobial Resistance and Virulence: a Successful or Deleterious Association in the Bacterial World?. Clinical Microbiology Reviews, 2013, 26, 185-230.	13.6	775
2	Phosphoethanolamine Modification of Lipid A in Colistin-Resistant Variants of Acinetobacter baumannii Mediated by the pmrAB Two-Component Regulatory System. Antimicrobial Agents and Chemotherapy, 2011, 55, 3370-3379.	3.2	354
3	Biological Cost of Different Mechanisms of Colistin Resistance and Their Impact on Virulence in Acinetobacter baumannii. Antimicrobial Agents and Chemotherapy, 2014, 58, 518-526.	3.2	218
4	Pan-β-Lactam Resistance Development in Pseudomonas aeruginosa Clinical Strains: Molecular Mechanisms, Penicillin-Binding Protein Profiles, and Binding Affinities. Antimicrobial Agents and Chemotherapy, 2012, 56, 4771-4778.	3.2	138
5	Evaluation of different methods for detecting methicillin (oxacillin) resistance in Staphylococcus aureus. Journal of Antimicrobial Chemotherapy, 2005, 55, 379-382.	3.0	135
6	Efflux Pumps, OprD Porin, AmpC β-Lactamase, and Multiresistance in <i>Pseudomonas aeruginosa</i> Isolates from Cystic Fibrosis Patients. Antimicrobial Agents and Chemotherapy, 2010, 54, 2219-2224.	3.2	130
7	Hospital outbreak caused by a carbapenem-resistant strain of Acinetobacter baumannii: patient prognosis and risk-factors for colonisation and infection. Clinical Microbiology and Infection, 2005, 11, 540-546.	6.0	127
8	OXA-24 Carbapenemase Gene Flanked by XerC/XerD-Like Recombination Sites in Different Plasmids from Different <i>Acinetobacter</i> Species Isolated during a Nosocomial Outbreak. Antimicrobial Agents and Chemotherapy, 2010, 54, 2724-2727.	3.2	118
9	Acinetobacter baumannii RecA Protein in Repair of DNA Damage, Antimicrobial Resistance, General Stress Response, and Virulence. Journal of Bacteriology, 2011, 193, 3740-3747.	2.2	113
10	Crystal structure of the carbapenemase OXA-24 reveals insights into the mechanism of carbapenem hydrolysis. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 5354-5359.	7.1	105
11	The Acinetobacter baumannii Omp33-36 Porin Is a Virulence Factor That Induces Apoptosis and Modulates Autophagy in Human Cells. Infection and Immunity, 2014, 82, 4666-4680.	2.2	105
12	Cloning and Functional Analysis of the Gene Encoding the 33- to 36-Kilodalton Outer Membrane Protein Associated with Carbapenem Resistance in Acinetobacter baumannii. Antimicrobial Agents and Chemotherapy, 2005, 49, 5172-5175.	3.2	96
13	The FhaB/FhaC two-partner secretion system is involved in adhesion of <i>Acinetobacter baumannii</i> AbH12O-A2 strain. Virulence, 2017, 8, 959-974.	4.4	72
14	Characterization of the New Metallo-β-Lactamase VIM-13 and Its Integron-Borne Gene from a <i>Pseudomonas aeruginosa</i> Clinical Isolate in Spain. Antimicrobial Agents and Chemotherapy, 2008, 52, 3589-3596.	3.2	71
15	New Carbapenemase Inhibitors: Clearing the Way for the β-Lactams. International Journal of Molecular Sciences, 2020, 21, 9308.	4.1	70
16	Design, Synthesis, and Crystal Structures of 6-Alkylidene-2′-Substituted Penicillanic Acid Sulfones as Potent Inhibitors of <i>Acinetobacter baumannii</i> OXA-24 Carbapenemase. Journal of the American Chemical Society, 2010, 132, 13320-13331.	13.7	60
17	Cloning, Nucleotide Sequencing, and Analysis of the AcrAB-TolC Efflux Pump of <i>Enterobacter cloacae</i> and Determination of Its Involvement in Antibiotic Resistance in a Clinical Isolate. Antimicrobial Agents and Chemotherapy, 2007, 51, 3247-3253.	3.2	54
18	Design of live attenuated bacterial vaccines based on D-glutamate auxotrophy. Nature Communications, 2017, 8, 15480.	12.8	53

#	Article	IF	CITATIONS
19	Analysis of the role of the LH92_11085 gene of a biofilm hyper-producing <i>Acinetobacter baumannii</i> strain on biofilm formation and attachment to eukaryotic cells. Virulence, 2016, 7, 443-455.	4.4	52
20	Risk Factors for Colonization and Infection in a Hospital Outbreak Caused by a Strain of Klebsiella pneumoniae with Reduced Susceptibility to Expanded-Spectrum Cephalosporins. Journal of Clinical Microbiology, 2004, 42, 4242-4249.	3.9	44
21	False extended-spectrum β-lactamase phenotype in clinical isolates of Escherichia coli associated with increased expression of OXA-1 or TEM-1 penicillinases and loss of porins. Journal of Antimicrobial Chemotherapy, 2011, 66, 2006-2010.	3.0	44
22	Quantitative proteomic analysis of host—pathogen interactions: a study of Acinetobacter baumannii responses to host airways. BMC Genomics, 2015, 16, 422.	2.8	42
23	Contribution of the A. baumannii A1S_0114 Gene to the Interaction with Eukaryotic Cells and Virulence. Frontiers in Cellular and Infection Microbiology, 2017, 7, 108.	3.9	41
24	Molecular mechanisms driving the <i>in vivo</i> development of OXA-10-mediated resistance to ceftolozane/tazobactam and ceftazidime/avibactam during treatment of XDR <i>Pseudomonas aeruginosa</i> infections. Journal of Antimicrobial Chemotherapy, 2021, 76, 91-100.	3.0	38
25	Pneumonia infection in mice reveals the involvement of the feoA gene in the pathogenesis of Acinetobacter baumannii. Virulence, 2018, 9, 496-509.	4.4	33
26	Class C β-Lactamases. Reviews in Medical Microbiology, 2004, 15, 141-152.	0.9	31
27	Type 1 Integrons in Epidemiologically Unrelated Acinetobacter baumannii Isolates Collected at Spanish Hospitals. Antimicrobial Agents and Chemotherapy, 2004, 48, 364-365.	3.2	30
28	Role of changes in the L3 loop of the active site in the evolution of enzymatic activity of VIM-type metallo-Â-lactamases. Journal of Antimicrobial Chemotherapy, 2010, 65, 1950-1954.	3.0	29
29	Activity of the β-Lactamase Inhibitor LN-1-255 against Carbapenem-Hydrolyzing Class D β-Lactamases from Acinetobacter baumannii. Antimicrobial Agents and Chemotherapy, 2017, 61, .	3.2	29
30	Interspecies spread of CTX-M-32 extended-spectrum β-lactamase and the role of the insertion sequence IS1 in down-regulating blaCTX-M gene expression. Journal of Antimicrobial Chemotherapy, 2007, 59, 841-847.	3.0	28
31	Assessment of antivirulence activity of several d-amino acids against <i>Acinetobacter baumannii</i> and <i>Pseudomonas aeruginosa</i> . Journal of Antimicrobial Chemotherapy, 2016, 71, 3473-3481.	3.0	28
32	Selection of AmpC β-Lactamase Variants and Metallo-β-Lactamases Leading to Ceftolozane/Tazobactam and Ceftazidime/Avibactam Resistance during Treatment of MDR/XDR Pseudomonas aeruginosa Infections. Antimicrobial Agents and Chemotherapy, 2022, 66, AAC0206721.	3.2	28
33	LN-1-255, a penicillanic acid sulfone able to inhibit the class D carbapenemase OXA-48. Journal of Antimicrobial Chemotherapy, 2016, 71, 2171-2180.	3.0	27
34	Activity of imipenem/relebactam against a Spanish nationwide collection of carbapenemase-producing Enterobacterales. Journal of Antimicrobial Chemotherapy, 2021, 76, 1498-1510.	3.0	27
35	Molecular and biochemical insights into the in vivo evolution of AmpC-mediated resistance to ceftolozane/tazobactam during treatment of an MDR Pseudomonas aeruginosa infection. Journal of Antimicrobial Chemotherapy, 2020, 75, 3209-3217.	3.0	26
36	Assessment of Activity and Resistance Mechanisms to Cefepime in Combination with the Novel Î ² -Lactamase Inhibitors Zidebactam, Taniborbactam, and Enmetazobactam against a Multicenter Collection of Carbapenemase-Producing <i>Enterobacterales</i> . Antimicrobial Agents and Chemotherapy, 2022, 66, AAC0167621.	3.2	26

#	Article	IF	CITATIONS
37	Structure-function studies of arginine at position 276 in CTX-M Â-lactamases. Journal of Antimicrobial Chemotherapy, 2008, 61, 792-797.	3.0	23
38	Kpi, a chaperone-usher pili system associated with the worldwide-disseminated high-risk clone <i>Klebsiella pneumoniae</i> ST-15. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 17249-17259.	7.1	23
39	Molecular Characterization of the Gene Encoding a New AmpC Î ² -Lactamase in a Clinical Strain of Acinetobacter Genomic Species 3. Antimicrobial Agents and Chemotherapy, 2004, 48, 1374-1378.	3.2	22
40	Molecular characterization of the gene encoding a new AmpC β-lactamase in Acinetobacter baylyi. Journal of Antimicrobial Chemotherapy, 2007, 59, 996-1000.	3.0	22
41	Optimisation of the Caenorhabditis elegans model for studying the pathogenesis of opportunistic Acinetobacter baumannii. International Journal of Antimicrobial Agents, 2015, , .	2.5	22
42	Challenging Antimicrobial Susceptibility and Evolution of Resistance (OXA-681) during Treatment of a Long-Term Nosocomial Infection Caused by a Pseudomonas aeruginosa ST175 Clone. Antimicrobial Agents and Chemotherapy, 2019, 63, .	3.2	22
43	Antisense inhibition of lpxB gene expression in Acinetobacter baumannii by peptide–PNA conjugates and synergy with colistin. Journal of Antimicrobial Chemotherapy, 2020, 75, 51-59.	3.0	22
44	Genetic Variability among <i>ampC</i> Genes from <i>Acinetobacter</i> Genomic Species 3. Antimicrobial Agents and Chemotherapy, 2009, 53, 1177-1184.	3.2	21
45	In Vitro and In Vivo Assessment of the Efficacy of Bromoageliferin, an Alkaloid Isolated from the Sponge Agelas dilatata, against Pseudomonas aeruginosa. Marine Drugs, 2020, 18, 326.	4.6	19
46	Global assessment of small RNAs reveals a non-coding transcript involved in biofilm formation and attachment in Acinetobacter baumannii ATCC 17978. PLoS ONE, 2017, 12, e0182084.	2.5	19
47	Antimicrobial Susceptibility and Mechanisms of Resistance to Quinolones and β-Lactams in Acinetobacter Genospecies 3. Antimicrobial Agents and Chemotherapy, 2004, 48, 1430-1432.	3.2	17
48	Targeting the Motion of Shikimate Kinase: Development of Competitive Inhibitors that Stabilize an Inactive Open Conformation of the Enzyme. Journal of Medicinal Chemistry, 2016, 59, 5471-5487.	6.4	15
49	Global Transcriptomic Analysis During Murine Pneumonia Infection Reveals New Virulence Factors in <i>Acinetobacter baumannii</i> . Journal of Infectious Diseases, 2021, 223, 1356-1366.	4.0	14
50	In-Depth Analysis of the Role of the Acinetobactin Cluster in the Virulence of Acinetobacter baumannii. Frontiers in Microbiology, 2021, 12, 752070.	3.5	13
51	Clinical Features of Infections and Colonization by <i>Acinetobacter</i> Genospecies 3. Journal of Clinical Microbiology, 2010, 48, 4623-4626.	3.9	12
52	Characterization of a Novel IMP-28 Metallo-β-Lactamase from a Spanish Klebsiella oxytoca Clinical Isolate. Antimicrobial Agents and Chemotherapy, 2012, 56, 4540-4543.	3.2	12
53	Chemical Modification of a Dehydratase Enzyme Involved in Bacterial Virulence by an Ammonium Derivative: Evidence of its Active Site Covalent Adduct. Journal of the American Chemical Society, 2015, 137, 9333-9343.	13.7	12
54	Study of the Phosphorylâ€Transfer Mechanism of Shikimate Kinase by NMR Spectroscopy. Chemistry - A European Journal, 2016, 22, 2758-2768.	3.3	12

#	Article	IF	CITATIONS
55	Involvement of HisF in the Persistence of Acinetobacter baumannii During a Pneumonia Infection. Frontiers in Cellular and Infection Microbiology, 2019, 9, 310.	3.9	11
56	Syzygium aromaticum (clove) and Thymus zygis (thyme) essential oils increase susceptibility to colistin in the nosocomial pathogens Acinetobacter baumannii and Klebsiella pneumoniae. Biomedicine and Pharmacotherapy, 2020, 130, 110606.	5.6	11
57	6-Arylmethylidene Penicillin-Based Sulfone Inhibitors for Repurposing Antibiotic Efficiency in Priority Pathogens. Journal of Medicinal Chemistry, 2020, 63, 3737-3755.	6.4	11
58	Emergence of 16S rRNA methyltransferases among carbapenemase-producing Enterobacterales in Spain studied by whole-genome sequencing. International Journal of Antimicrobial Agents, 2022, 59, 106456.	2.5	11
59	False extended-spectrum Â-lactamase detection in Acinetobacter spp. due to intrinsic susceptibility to clavulanic acid. Journal of Antimicrobial Chemotherapy, 2007, 61, 301-308.	3.0	10
60	6-Halopyridylmethylidene Penicillin-Based Sulfones Efficiently Inactivate the Natural Resistance of <i>Pseudomonas aeruginosa</i> to β-Lactam Antibiotics. Journal of Medicinal Chemistry, 2021, 64, 6310-6328.	6.4	10
61	In Vitro Activity and In Vivo Efficacy of Clavulanic Acid against <i>Acinetobacter baumannii</i> . Antimicrobial Agents and Chemotherapy, 2009, 53, 4298-4304.	3.2	9
62	Therapeutic Efficacy of LN-1-255 in Combination with Imipenem in Severe Infection Caused by Carbapenem-Resistant Acinetobacter baumannii. Antimicrobial Agents and Chemotherapy, 2019, 63, .	3.2	9
63	Marine Organisms from the Yucatan Peninsula (Mexico) as a Potential Natural Source of Antibacterial Compounds. Marine Drugs, 2020, 18, 369.	4.6	8
64	Genetic and Kinetic Characterization of the Novel AmpC β-Lactamases DHA-6 and DHA-7. Antimicrobial Agents and Chemotherapy, 2014, 58, 6544-6549.	3.2	7
65	New mutations in ADC-type β-lactamases from Acinetobacter spp. affect cefoxitin and ceftazidime hydrolysis. Journal of Antimicrobial Chemotherapy, 2014, 69, 2407-2411.	3.0	7
66	Synergy between Colistin and the Signal Peptidase Inhibitor MD3 Is Dependent on the Mechanism of Colistin Resistance in Acinetobacter baumannii. Antimicrobial Agents and Chemotherapy, 2016, 60, 4375-4379.	3.2	6
67	Activity of Imipenem, Meropenem, Cefepime, and Sulbactam in Combination with the β-Lactamase Inhibitor LN-1-255 against Acinetobacter spp Antibiotics, 2021, 10, 210.	3.7	5
68	Increased Antimicrobial Resistance in a Novel CMY-54 AmpC-Type Enzyme with a GluLeu ^{217–218} Insertion in the Ω-Loop. Microbial Drug Resistance, 2018, 24, 527-533.	2.0	4
69	Carbapenem Resistance in Acinetobacter nosocomialis and Acinetobacter junii Conferred by Acquisition of <i>bla</i> _{OXA-24/40} and Genetic Characterization of the Transmission Mechanism between Acinetobacter Genomic Species. Microbiology Spectrum, 2022, 10, e0273421.	3.0	4
70	Antimicrobial Diterpene Alkaloids from an Agelas citrina Sponge Collected in the Yucatán Peninsula. Marine Drugs, 2022, 20, 298.	4.6	4
71	Reply to Shapiro, "Cefepime/Enmetazobactam Is a Clinically Effective Combination Targeting Extended-Spectrum β-Lactamase-Producing <i>Enterobacterales</i> ― Antimicrobial Agents and Chemotherapy, 2022, 66, e0035322.	3.2	1