Iain McCulloch

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/5430250/iain-mcculloch-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

470	43,251 citations	105	194
papers		h-index	g-index
519	48,438 ext. citations	13.7	7.62
ext. papers		avg, IF	L-index

#	Paper	IF	Citations
470	Semiconducting Polymers for Neural Applications Chemical Reviews, 2022,	68.1	14
469	Infrared Organic Photodetectors Employing Ultralow Bandgap Polymer and Non-Fullerene Acceptors for Biometric Monitoring <i>Small</i> , 2022 , e2200580	11	3
468	Synthetic Nuances to Maximize n-Type Organic Electrochemical Transistor and Thermoelectric Performance in Fused Lactam Polymers <i>Journal of the American Chemical Society</i> , 2022 ,	16.4	9
467	Stretchable Redox-active Semiconducting Polymers for High-performance Organic Electrochemical Transistors <i>Advanced Materials</i> , 2022 , e2201178	24	3
466	Propylene and butylene glycol: new alternatives to ethylene glycol in conjugated polymers for bioelectronic applications <i>Materials Horizons</i> , 2021 ,	14.4	4
465	Organic neuromorphic electronics for sensorimotor integration and learning in robotics. <i>Science Advances</i> , 2021 , 7, eabl5068	14.3	11
464	Chemical Design Rules for Non-Fullerene Acceptors in Organic Solar Cells (Adv. Energy Mater. 44/2021). <i>Advanced Energy Materials</i> , 2021 , 11, 2170175	21.8	O
463	Lactone Backbone Density in Rigid Electron-Deficient Semiconducting Polymers Enabling High n-type Organic Thermoelectric Performance. <i>Angewandte Chemie - International Edition</i> , 2021 ,	16.4	4
462	High Current-density Organic Electrochemical Diodes Enabled by Asymmetric Active Layer Design. <i>Advanced Materials</i> , 2021 , e2107355	24	1
461	Electrolyte-gated transistors for enhanced performance bioelectronics <i>Nature Reviews Methods Primers</i> , 2021 , 1,		42
460	Co-delivery of NIR-II semiconducting polymer and pH-sensitive doxorubicin-conjugated prodrug for photothermal/chemotherapy. <i>Acta Biomaterialia</i> , 2021 ,	10.8	3
459	Unraveling the Unconventional Order of a High-Mobility Indacenodithiophene-Benzothiadiazole Copolymer <i>ACS Macro Letters</i> , 2021 , 10, 1306-1314	6.6	2
458	Printed Memtransistor Utilizing a Hybrid Perovskite/Organic Heterojunction Channel. <i>ACS Applied Materials & Amp; Interfaces</i> , 2021 , 13, 51592-51601	9.5	4
457	Oligoethylene Glycol Side Chains Increase Charge Generation in Organic Semiconductor Nanoparticles for Enhanced Photocatalytic Hydrogen Evolution. <i>Advanced Materials</i> , 2021 , e2105007	24	6
456	n-Type Rigid Semiconducting Polymers Bearing Oligo(Ethylene Glycol) Side Chains for High-Performance Organic Electrochemical Transistors. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 9368-9373	16.4	35
455	High-Gain Chemically Gated Organic Electrochemical Transistor. <i>Advanced Functional Materials</i> , 2021 , 31, 2010868	15.6	21
454	Microfluidic Integrated Organic Electrochemical Transistor with a Nanoporous Membrane for Amyloid-即etection. <i>ACS Nano</i> , 2021 , 15, 8130-8141	16.7	18

(2021-2021)

453	Challenges to the Success of Commercial Organic Photovoltaic Products. <i>Advanced Energy Materials</i> , 2021 , 11, 2100056	21.8	26	
452	Adjusting the energy of interfacial states in organic photovoltaics for maximum efficiency. <i>Nature Communications</i> , 2021 , 12, 1772	17.4	12	
451	Mixed Conduction in an N-Type Organic Semiconductor in the Absence of Hydrophilic Side-Chains. <i>Advanced Functional Materials</i> , 2021 , 31, 2010165	15.6	36	
450	Correlating Charge-Transfer State Lifetimes with Material Energetics in Polymer:Non-Fullerene Acceptor Organic Solar Cells. <i>Journal of the American Chemical Society</i> , 2021 , 143, 7599-7603	16.4	19	
449	Charge transport physics of a unique class of rigid-rod conjugated polymers with fused-ring conjugated units linked by double carbon-carbon bonds. <i>Science Advances</i> , 2021 , 7,	14.3	7	
448	Controlling Electrochemically Induced Volume Changes in Conjugated Polymers by Chemical Design: from Theory to Devices. <i>Advanced Functional Materials</i> , 2021 , 31, 2100723	15.6	13	
447	Influence of alkyne spacers on the performance of thiophene-based donors in bulk-heterojunction organic photovoltaic cells. <i>Dyes and Pigments</i> , 2021 , 188, 109152	4.6	2	
446	Suppressing bias stress degradation in high performance solution processed organic transistors operating in air. <i>Nature Communications</i> , 2021 , 12, 2352	17.4	11	
445	Inkjet Printed Circuits with 2D Semiconductor Inks for High-Performance Electronics. <i>Advanced Electronic Materials</i> , 2021 , 7, 2100112	6.4	15	
444	Rapid single-molecule detection of COVID-19 and MERS antigens via nanobody-functionalized organic electrochemical transistors. <i>Nature Biomedical Engineering</i> , 2021 , 5, 666-677	19	78	
443	Impact of Acceptor Quadrupole Moment on Charge Generation and Recombination in Blends of IDT-Based Non-Fullerene Acceptors with PCE10 as Donor Polymer. <i>Advanced Energy Materials</i> , 2021 , 11, 2100839	21.8	6	
442	Regiochemistry-Driven Organic Electrochemical Transistor Performance Enhancement in Ethylene Glycol-Functionalized Polythiophenes. <i>Journal of the American Chemical Society</i> , 2021 , 143, 11007-11018	3 ^{16.4}	22	
441	Concurrent cationic and anionic perovskite defect passivation enables 27.4% perovskite/silicon tandems with suppression of halide segregation. <i>Joule</i> , 2021 , 5, 1566-1586	27.8	43	
440	Elucidating the Role of Water-Related Traps in the Operation of Polymer Field-Effect Transistors. <i>Advanced Electronic Materials</i> , 2021 , 7, 2100393	6.4	2	
439	Ternary organic photodetectors based on pseudo-binaries nonfullerene-based acceptors. <i>JPhys Materials</i> , 2021 , 4, 045001	4.2	2	
438	Highly Deformed o-Carborane Functionalised Non-linear Polycyclic Aromatics with Exceptionally Long C-C Bonds. <i>Chemistry - A European Journal</i> , 2021 , 27, 1970-1975	4.8	3	
437	Scaling-up perovskite solar cells on hydrophobic surfaces. <i>Nano Energy</i> , 2021 , 81, 105633	17.1	15	
436	Linking Glass-Transition Behavior to Photophysical and Charge Transport Properties of High-Mobility Conjugated Polymers. <i>Advanced Functional Materials</i> , 2021 , 31, 2007359	15.6	11	

435	Polaron Delocalization in Donor-Acceptor Polymers and its Impact on Organic Electrochemical Transistor Performance. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 7777-7785	16.4	41
434	Polaron Delocalization in DonorAcceptor Polymers and its Impact on Organic Electrochemical Transistor Performance. <i>Angewandte Chemie</i> , 2021 , 133, 7856-7864	3.6	12
433	Acene Ring Size Optimization in Fused Lactam Polymers Enabling High n-Type Organic Thermoelectric Performance. <i>Journal of the American Chemical Society</i> , 2021 , 143, 260-268	16.4	30
432	Intrinsic efficiency limits in low-bandgap non-fullerene acceptor organic solar cells. <i>Nature Materials</i> , 2021 , 20, 378-384	27	108
431	N-Doping improves charge transport and morphology in the organic non-fullerene acceptor O-IDTBR. <i>Journal of Materials Chemistry C</i> , 2021 , 9, 4486-4495	7.1	5
430	Non-fullerene-based organic photodetectors for infrared communication. <i>Journal of Materials Chemistry C</i> , 2021 , 9, 2375-2380	7.1	12
429	Coupling molecular rigidity and flexibility on fused backbones for NIR-II photothermal conversion. <i>Chemical Science</i> , 2021 , 12, 5177-5184	9.4	9
428	Operation mechanism of organic electrochemical transistors as redox chemical transducers. <i>Journal of Materials Chemistry C</i> , 2021 , 9, 12148-12158	7.1	4
427	A molecular interaction-diffusion framework for predicting organic solar cell stability. <i>Nature Materials</i> , 2021 , 20, 525-532	27	71
426	Influence of Side Chains on the n-Type Organic Electrochemical Transistor Performance. <i>ACS Applied Materials & District Materials & Di</i>	9.5	34
425	Microfluidics integrated n-type organic electrochemical transistor for metabolite sensing. <i>Sensors and Actuators B: Chemical</i> , 2021 , 329, 129251	8.5	8
424	n-Type Rigid Semiconducting Polymers Bearing Oligo(Ethylene Glycol) Side Chains for High-Performance Organic Electrochemical Transistors. <i>Angewandte Chemie</i> , 2021 , 133, 9454-9459	3.6	2
423	Non-fullerene acceptor photostability and its impact on organic solar cell lifetime. <i>Cell Reports Physical Science</i> , 2021 , 2, 100498	6.1	9
422	High-Efficiency Ion-Exchange Doping of Conducting Polymers. <i>Advanced Materials</i> , 2021 , e2102988	24	16
421	Ambipolar inverters based on cofacial vertical organic electrochemical transistor pairs for biosignal amplification. <i>Science Advances</i> , 2021 , 7, eabh1055	14.3	12
420	Design of experiment optimization of aligned polymer thermoelectrics doped by ion-exchange. <i>Applied Physics Letters</i> , 2021 , 119, 111903	3.4	3
419	A molecular design approach towards elastic and multifunctional polymer electronics. <i>Nature Communications</i> , 2021 , 12, 5701	17.4	14
418	The Effect of Alkyl Spacers on the Mixed Ionic-Electronic Conduction Properties of N-Type Polymers. <i>Advanced Functional Materials</i> , 2021 , 31, 2008718	15.6	33

(2020-2021)

417	n-Type organic semiconducting polymers: stability limitations, design considerations and applications. <i>Journal of Materials Chemistry C</i> , 2021 , 9, 8099-8128	7.1	28
416	Anisotropy of Charge Transport in a Uniaxially Aligned Fused Electron-Deficient Polymer Processed by Solution Shear Coating. <i>Advanced Materials</i> , 2020 , 32, e2000063	24	18
415	Metal-free polymerization: synthesis and properties of fused benzo[1,2-b:4,5-b?]bis[b]benzothiophene (BBBT) polymers. <i>Polymer Chemistry</i> , 2020 , 11, 3695-3700	4.9	4
414	Side-chain tuning in conjugated polymer photocatalysts for improved hydrogen production from water. <i>Energy and Environmental Science</i> , 2020 , 13, 1843-1855	35.4	51
413	Engineering Optically Switchable Transistors with Improved Performance by Controlling Interactions of Diarylethenes in Polymer Matrices. <i>Journal of the American Chemical Society</i> , 2020 , 142, 11050-11059	16.4	24
412	Water stable molecular n-doping produces organic electrochemical transistors with high transconductance and record stability. <i>Nature Communications</i> , 2020 , 11, 3004	17.4	51
411	Large-Area Uniform Polymer Transistor Arrays on Flexible Substrates: Towards High-Throughput Sensor Fabrication. <i>Advanced Materials Technologies</i> , 2020 , 5, 2000390	6.8	10
410	Correlating the Structural and Photophysical Properties of Ortho, Meta, and Para-Carboranyl Anthracene Dyads. <i>Advanced Electronic Materials</i> , 2020 , 6, 2000312	6.4	7
409	Monitoring supported lipid bilayers with n-type organic electrochemical transistors. <i>Materials Horizons</i> , 2020 , 7, 2348-2358	14.4	21
408	Exploiting Ternary Blends for Improved Photostability in High-Efficiency Organic Solar Cells. <i>ACS Energy Letters</i> , 2020 , 5, 1371-1379	20.1	83
407	Pulse Oximetry Using Organic Optoelectronics under Ambient Light. <i>Advanced Materials Technologies</i> , 2020 , 5, 1901122	6.8	16
406	Temperature-resilient solid-state organic artificial synapses for neuromorphic computing. <i>Science Advances</i> , 2020 , 6,	14.3	67
405	Organic thin-film transistors with flame-annealed contacts. Flexible and Printed Electronics, 2020 , 5, 014	1031 5	3
404	Energetic Control of Redox-Active Polymers toward Safe Organic Bioelectronic Materials. <i>Advanced Materials</i> , 2020 , 32, e1908047	24	65
403	17.1% Efficient Single-Junction Organic Solar Cells Enabled by n-Type Doping of the Bulk-Heterojunction. <i>Advanced Science</i> , 2020 , 7, 1903419	13.6	110
402	Conjugated Polymers: Reversible Electronic Solid L el Switching of a Conjugated Polymer (Adv. Sci. 2/2020). <i>Advanced Science</i> , 2020 , 7, 2070009	13.6	78
401	Balancing Ionic and Electronic Conduction for High-Performance Organic Electrochemical Transistors. <i>Advanced Functional Materials</i> , 2020 , 30, 1907657	15.6	70
400	Influence of Polymer Aggregation and Liquid Immiscibility on Morphology Tuning by Varying Composition in PffBT4T-2DT/Nonfullerene Organic Solar Cells. <i>Advanced Energy Materials</i> , 2020 , 10, 1903248	21.8	18

399	Universal Spray-Deposition Process for Scalable, High-Performance, and Stable Organic Electrochemical Transistors. <i>ACS Applied Materials & Description</i> , 12, 20757-20764	9.5	26
398	Enhanced photocatalytic hydrogen evolution from organic semiconductor heterojunction nanoparticles. <i>Nature Materials</i> , 2020 , 19, 559-565	27	171
397	Reversible Electronic Solid-Gel Switching of a Conjugated Polymer. <i>Advanced Science</i> , 2020 , 7, 1901144	13.6	27
396	A universal solution processed interfacial bilayer enabling ohmic contact in organic and hybrid optoelectronic devices. <i>Energy and Environmental Science</i> , 2020 , 13, 268-276	35.4	26
395	Afterglow Effects as a Tool to Screen Emissive Nongeminate Charge Recombination Processes in Organic Photovoltaic Composites. <i>ACS Applied Materials & Acs Applied & Acs App</i>	9.5	3
394	The role of chemical design in the performance of organic semiconductors. <i>Nature Reviews Chemistry</i> , 2020 , 4, 66-77	34.6	205
393	Biofuel powered glucose detection in bodily fluids with an n-type conjugated polymer. <i>Nature Materials</i> , 2020 , 19, 456-463	27	105
392	Modification of Indacenodithiophene-Based Polymers and Its Impact on Charge Carrier Mobility in Organic Thin-Film Transistors. <i>Journal of the American Chemical Society</i> , 2020 , 142, 652-664	16.4	55
391	Low-Temperature Cross-Linking Benzocyclobutene Based Polymer Dielectric for Organic Thin Film Transistors on Plastic Substrates. <i>Journal of Organic Chemistry</i> , 2020 , 85, 277-283	4.2	5
390	Phototuning Selectively Hole and Electron Transport in Optically Switchable Ambipolar Transistors. <i>Advanced Functional Materials</i> , 2020 , 30, 1908944	15.6	18
389	Energetic Disorder and Activation Energy in Efficient Ternary Organic Solar Cells with Nonfullerene Acceptor Eh-IDTBR as the Third Component. <i>Solar Rrl</i> , 2020 , 4, 1900403	7.1	33
388	Slow charge transfer from pentacene triplet states at the Marcus optimum. <i>Nature Chemistry</i> , 2020 , 12, 63-70	17.6	18
387	Nonfullerene-Based Organic Photodetectors for Ultrahigh Sensitivity Visible Light Detection. <i>ACS Applied Materials & Detection</i> , 12, 48836-48844	9.5	15
386	Organic Solar Cells: Exciton and Charge Carrier Dynamics in Highly Crystalline PTQ10:IDIC Organic Solar Cells (Adv. Energy Mater. 38/2020). <i>Advanced Energy Materials</i> , 2020 , 10, 2070158	21.8	O
385	Long-range exciton diffusion in molecular non-fullerene acceptors. <i>Nature Communications</i> , 2020 , 11, 5220	17.4	87
384	Exciton and Charge Carrier Dynamics in Highly Crystalline PTQ10:IDIC Organic Solar Cells. <i>Advanced Energy Materials</i> , 2020 , 10, 2001149	21.8	24
383	Effects of Fluorination on Fused Ring Electron Acceptor for Active Layer Morphology, Exciton Dissociation, and Charge Recombination in Organic Solar Cells. <i>ACS Applied Materials & Amp; Interfaces</i> , 2020 , 12, 56231-56239	9.5	8
382	Resolving Different Physical Origins toward Crystallite Imperfection in Semiconducting Polymers: Crystallite Size vs Paracrystallinity. <i>Journal of Physical Chemistry B</i> , 2020 , 124, 10529-10538	3.4	5

(2019-2020)

381	The Chemistry and Applications of Heteroisoindigo Units as Enabling Links for Semiconducting Materials. <i>Accounts of Chemical Research</i> , 2020 , 53, 2855-2868	24.3	24
380	Side Chain Redistribution as a Strategy to Boost Organic Electrochemical Transistor Performance and Stability. <i>Advanced Materials</i> , 2020 , 32, e2002748	24	88
379	The effect of aromatic ring size in electron deficient semiconducting polymers for n-type organic thermoelectrics. <i>Journal of Materials Chemistry C</i> , 2020 , 8, 15150-15157	7.1	15
378	Ethylene Glycol-Based Side Chain Length Engineering in Polythiophenes and its Impact on Organic Electrochemical Transistor Performance. <i>Chemistry of Materials</i> , 2020 , 32, 6618-6628	9.6	47
377	Hidden Perils of Lead in the Lab: Guidelines for Containing, Monitoring, and Decontaminating Lead in the Context of Perovskite Research. <i>Chemistry of Materials</i> , 2020 , 32, 7141-7149	9.6	2
376	Tracking Charge Transfer to Residual Metal Clusters in Conjugated Polymers for Photocatalytic Hydrogen Evolution. <i>Journal of the American Chemical Society</i> , 2020 , 142, 14574-14587	16.4	56
375	The Bulk Heterojunction in Organic Photovoltaic, Photodetector, and Photocatalytic Applications. <i>Advanced Materials</i> , 2020 , 32, e2001763	24	68
374	Thermally Induced Formation of HFTCNQ in FTCNQ-Doped Regioregular P3HT. <i>Journal of Physical Chemistry Letters</i> , 2020 , 11, 6586-6592	6.4	9
373	Low-Voltage, Dual-Gate Organic Transistors with High Sensitivity and Stability toward Electrostatic Biosensing. <i>ACS Applied Materials & Discounty of the Property of the Prop</i>	9.5	12
372	Ion Coordination and Chelation in a Glycolated Polymer Semiconductor: Molecular Dynamics and X-ray Fluorescence Study. <i>Chemistry of Materials</i> , 2020 , 32, 7301-7308	9.6	9
371	High-Performance Perovskite Single-Junction and Textured Perovskite/Silicon Tandem Solar Cells via Slot-Die-Coating. <i>ACS Energy Letters</i> , 2020 , 5, 3034-3040	20.1	65
370	Photocatalysts Based on Organic Semiconductors with Tunable Energy Levels for Solar Fuel Applications. <i>Advanced Energy Materials</i> , 2020 , 10, 2001935	21.8	39
369	A Multilayered Electron Extracting System for Efficient Perovskite Solar Cells. <i>Advanced Functional Materials</i> , 2020 , 30, 2004273	15.6	8
368	Correlating the Phase Behavior with the Device Performance in Binary Poly-3-hexylthiophene: Nonfullerene Acceptor Blend Using Optical Probes of the Microstructure. <i>Chemistry of Materials</i> , 2020 , 32, 8294-8305	9.6	13
367	The role of exciton lifetime for charge generation in organic solar cells at negligible energy-level offsets. <i>Nature Energy</i> , 2020 , 5, 711-719	62.3	110
366	High-density polyethylene∃n inert additive with stabilizing effects on organic field-effect transistors. <i>Journal of Materials Chemistry C</i> , 2020 , 8, 15406-15415	7.1	8
365	Self-Assembled Monolayer Enables Hole Transport Layer-Free Organic Solar Cells with 18% Efficiency and Improved Operational Stability. <i>ACS Energy Letters</i> , 2020 , 5, 2935-2944	20.1	244
364	Use of the Phen-NaDPO:Sn(SCN)2 Blend as Electron Transport Layer Results to Consistent Efficiency Improvements in Organic and Hybrid Perovskite Solar Cells. <i>Advanced Functional Materials</i> , 2019 , 29, 1905810	15.6	30

363	Membrane-Free Detection of Metal Cations with an Organic Electrochemical Transistor. <i>Advanced Functional Materials</i> , 2019 , 29, 1904403	15.6	52
362	Nanoscale Ion-Doped Polymer Transistors. <i>Nano Letters</i> , 2019 , 19, 1712-1718	11.5	15
361	Solvent Engineering for High-Performance n-Type Organic Electrochemical Transistors. <i>Advanced Electronic Materials</i> , 2019 , 5, 1900249	6.4	29
360	End Group Tuning in Acceptor Donor Acceptor Nonfullerene Small Molecules for High Fill Factor Organic Solar Cells. <i>Advanced Functional Materials</i> , 2019 , 29, 1808429	15.6	33
359	Polaron spin dynamics in high-mobility polymeric semiconductors. <i>Nature Physics</i> , 2019 , 15, 814-822	16.2	27
358	Suppression of Recombination Losses in Polymer:Nonfullerene Acceptor Organic Solar Cells due to Aggregation Dependence of Acceptor Electron Affinity. <i>Advanced Energy Materials</i> , 2019 , 9, 1901254	21.8	42
357	Short contacts between chains enhancing luminescence quantum yields and carrier mobilities in conjugated copolymers. <i>Nature Communications</i> , 2019 , 10, 2614	17.4	29
356	High-mobility, trap-free charge transport in conjugated polymer diodes. <i>Nature Communications</i> , 2019 , 10, 2122	17.4	61
355	Charge carrier transport and nanomorphology control for efficient non-fullerene organic solar cells. <i>Materials Today Energy</i> , 2019 , 12, 398-407	7	20
354	Delineation of Thermodynamic and Kinetic Factors that Control Stability in Non-fullerene Organic Solar Cells. <i>Joule</i> , 2019 , 3, 1328-1348	27.8	74
353	P3HT Molecular Weight Determines the Performance of P3HT:O-IDTBR Solar Cells. <i>Solar Rrl</i> , 2019 , 3, 1900023	7.1	21
352	Highly selective chromoionophores for ratiometric Na+ sensing based on an oligoethyleneglycol bridged bithiophene detection unit. <i>Journal of Materials Chemistry C</i> , 2019 , 7, 5359-5365	7.1	7
351	New synthetic methodology paves the way to prepare electron deficient semiconducting mesopolymers with very high performance. <i>Science China Chemistry</i> , 2019 , 62, 885-886	7.9	
350	Long spin diffusion lengths in doped conjugated polymers due to enhanced exchange coupling. <i>Nature Electronics</i> , 2019 , 2, 98-107	28.4	36
349	The role of the third component in ternary organic solar cells. <i>Nature Reviews Materials</i> , 2019 , 4, 229-24	12 73.3	244
348	Investigation of the thermoelectric response in conducting polymers doped by solid-state diffusion. <i>Materials Today Physics</i> , 2019 , 8, 112-122	8	28
347	Toward Improved Environmental Stability of Polymer:Fullerene and Polymer:Nonfullerene Organic Solar Cells: A Common Energetic Origin of Light- and Oxygen-Induced Degradation. <i>ACS Energy Letters</i> , 2019 , 4, 846-852	20.1	49
346	The binding energy and dynamics of charge-transfer states in organic photovoltaics with low driving force for charge separation. <i>Journal of Chemical Physics</i> , 2019 , 150, 104704	3.9	26

(2019-2019)

345	Design and evaluation of conjugated polymers with polar side chains as electrode materials for electrochemical energy storage in aqueous electrolytes. <i>Energy and Environmental Science</i> , 2019 , 12, 1349-1357	35.4	74
344	Negligible Energy Loss During Charge Generation in Small-Molecule/Fullerene Bulk-Heterojunction Solar Cells Leads to Open-Circuit Voltage over 1.10 V. <i>ACS Applied Energy Materials</i> , 2019 , 2, 2717-2722	6.1	20
343	Twist and DegradeImpact of Molecular Structure on the Photostability of Nonfullerene Acceptors and Their Photovoltaic Blends. <i>Advanced Energy Materials</i> , 2019 , 9, 1803755	21.8	62
342	Spectroscopic Investigation of the Effect of Microstructure and Energetic Offset on the Nature of Interfacial Charge Transfer States in Polymer: Fullerene Blends. <i>Journal of the American Chemical Society</i> , 2019 , 141, 4634-4643	16.4	26
341	Fused Pyrazine- and Carbazole-Containing Azaacenes: Synthesis and Properties. <i>ChemPlusChem</i> , 2019 , 84, 1257-1262	2.8	5
340	Impact of Nonfullerene Acceptor Side Chain Variation on Transistor Mobility. <i>Advanced Electronic Materials</i> , 2019 , 5, 1900344	6.4	30
339	On the Role of Contact Resistance and Electrode Modification in Organic Electrochemical Transistors. <i>Advanced Materials</i> , 2019 , 31, e1902291	24	31
338	Heavy-Metal-Free Flexible Hybrid Polymer-Nanocrystal Photodetectors Sensitive to 1.5 h Wavelength. <i>ACS Applied Materials & ACS ACS Applied Materials & ACS ACS ACS ACS ACS ACS ACS ACS ACS ACS</i>	9.5	6
337	The Effect of Ring Expansion in Thienobenzo[]indacenodithiophene Polymers for Organic Field-Effect Transistors. <i>Journal of the American Chemical Society</i> , 2019 , 141, 18806-18813	16.4	23
336	17% Efficient Organic Solar Cells Based on Liquid Exfoliated WS as a Replacement for PEDOT:PSS. <i>Advanced Materials</i> , 2019 , 31, e1902965	24	384
335	Hybrid Alkyl E thylene Glycol Side Chains Enhance Substrate Adhesion and Operational Stability in Accumulation Mode Organic Electrochemical Transistors. <i>Chemistry of Materials</i> , 2019 , 31, 9797-9806	9.6	51
334	Enhancing the Charge Extraction and Stability of Perovskite Solar Cells Using Strontium Titanate (SrTiO3) Electron Transport Layer. <i>ACS Applied Energy Materials</i> , 2019 , 2, 8090-8097	6.1	26
333	Carrier Extraction from Perovskite to Polymeric Charge Transport Layers Probed by Ultrafast Transient Absorption Spectroscopy. <i>Journal of Physical Chemistry Letters</i> , 2019 , 10, 6921-6928	6.4	11
332	An Intrinsically Stretchable High-Performance Polymer Semiconductor with Low Crystallinity. <i>Advanced Functional Materials</i> , 2019 , 29, 1905340	15.6	63
331	Excitation Wavelength-Dependent Internal Quantum Efficiencies in a P3HT/Nonfullerene Acceptor Solar Cell. <i>Journal of Physical Chemistry C</i> , 2019 , 123, 5826-5832	3.8	5
330	Role of the Anion on the Transport and Structure of Organic Mixed Conductors. <i>Advanced Functional Materials</i> , 2019 , 29, 1807034	15.6	68
329	Influence of Water on the Performance of Organic Electrochemical Transistors. <i>Chemistry of Materials</i> , 2019 , 31, 927-937	9.6	82
328	Double doping of conjugated polymers with monomer molecular dopants. <i>Nature Materials</i> , 2019 , 18, 149-155	27	146

327	Materials in Organic Electrochemical Transistors for Bioelectronic Applications: Past, Present, and Future. <i>Advanced Functional Materials</i> , 2019 , 29, 1807033	15.6	92
326	Critical review of the molecular design progress in non-fullerene electron acceptors towards commercially viable organic solar cells. <i>Chemical Society Reviews</i> , 2019 , 48, 1596-1625	58.5	617
325	Redox-Stability of Alkoxy-BDT Copolymers and their Use for Organic Bioelectronic Devices. <i>Advanced Functional Materials</i> , 2018 , 28, 1706325	15.6	58
324	Alternative Thieno[3,2-b][1]benzothiophene Isoindigo Polymers for Solar Cell Applications. <i>Macromolecular Rapid Communications</i> , 2018 , 39, e1700820	4.8	8
323	The Role of the Side Chain on the Performance of N-type Conjugated Polymers in Aqueous Electrolytes. <i>Chemistry of Materials</i> , 2018 , 30, 2945-2953	9.6	124
322	Carrier Transport and Recombination in Efficient All-Small-Molecule Solar Cells with the Nonfullerene Acceptor IDTBR. <i>Advanced Energy Materials</i> , 2018 , 8, 1800264	21.8	52
321	The Physics of Small Molecule Acceptors for Efficient and Stable Bulk Heterojunction Solar Cells. <i>Advanced Energy Materials</i> , 2018 , 8, 1703298	21.8	96
320	Fused electron deficient semiconducting polymers for air stable electron transport. <i>Nature Communications</i> , 2018 , 9, 416	17.4	91
319	A Thieno[2,3-b]pyridine-Flanked Diketopyrrolopyrrole Polymer as an n-Type Polymer Semiconductor for All-Polymer Solar Cells and Organic Field-Effect Transistors. <i>Macromolecules</i> , 2018 , 51, 71-79	5.5	44
318	Barbiturate end-capped non-fullerene acceptors for organic solar cells: tuning acceptor energetics to suppress geminate recombination losses. <i>Chemical Communications</i> , 2018 , 54, 2966-2969	5.8	23
317	Enhanced n-Doping Efficiency of a Naphthalenediimide-Based Copolymer through Polar Side Chains for Organic Thermoelectrics. <i>ACS Energy Letters</i> , 2018 , 3, 278-285	20.1	159
316	Lipid bilayer formation on organic electronic materials. <i>Journal of Materials Chemistry C</i> , 2018 , 6, 5218-5	52/2:17	11
315	Analyzing the efficiency, stability and cost potential for fullerene-free organic photovoltaics in one figure of merit. <i>Energy and Environmental Science</i> , 2018 , 11, 1355-1361	35.4	119
314	Direct metabolite detection with an n-type accumulation mode organic electrochemical transistor. <i>Science Advances</i> , 2018 , 4, eaat0911	14.3	114
313	Recent Progress in High-Mobility Organic Transistors: A Reality Check. <i>Advanced Materials</i> , 2018 , 30, e1801079	24	358
312	Performance Improvements in Conjugated Polymer Devices by Removal of Water-Induced Traps. <i>Advanced Materials</i> , 2018 , 30, e1801874	24	52
311	A Highly Crystalline Fused-Ring n-Type Small Molecule for Non-Fullerene Acceptor Based Organic Solar Cells and Field-Effect Transistors. <i>Advanced Functional Materials</i> , 2018 , 28, 1802895	15.6	63
310	Improving the Compatibility of Diketopyrrolopyrrole Semiconducting Polymers for Biological Interfacing by Lysine Attachment. <i>Chemistry of Materials</i> , 2018 , 30, 6164-6172	9.6	28

(2018-2018)

309	P3HT: non-fullerene acceptor based large area, semi-transparent PV modules with power conversion efficiencies of 5%, processed by industrially scalable methods. <i>Energy and Environmental Science</i> , 2018 , 11, 2225-2234	35.4	108
308	Conjugated Polymers in Bioelectronics. Accounts of Chemical Research, 2018, 51, 1368-1376	24.3	235
307	Visible and Near-Infrared Imaging with Nonfullerene-Based Photodetectors. <i>Advanced Materials Technologies</i> , 2018 , 3, 1800104	6.8	60
306	Correlation of Disorder and Charge Transport in a Range of Indacenodithiophene-Based Semiconducting Polymers. <i>Advanced Electronic Materials</i> , 2018 , 4, 1700410	6.4	16
305	Why are SE and SD non-covalent interactions stabilising?. <i>Journal of Materials Chemistry C</i> , 2018 , 6, 12413-12421	7.1	32
304	High performance ambient-air-stable FAPbI3 perovskite solar cells with molecule-passivated Ruddlesden Popper/3D heterostructured film. <i>Energy and Environmental Science</i> , 2018 , 11, 3358-3366	35.4	154
303	Overcoming efficiency and stability limits in water-processing nanoparticular organic photovoltaics by minimizing microstructure defects. <i>Nature Communications</i> , 2018 , 9, 5335	17.4	57
302	A simple and robust approach to reducing contact resistance in organic transistors. <i>Nature Communications</i> , 2018 , 9, 5130	17.4	72
301	A new cross-linkable 9,10-diphenylanthracene derivative as a wide bandgap host for solution-processed organic light-emitting diodes. <i>Journal of Materials Chemistry C</i> , 2018 , 6, 12948-1295	54 ^{7.1}	17
300	An Analysis of the Factors Determining the Efficiency of Photocurrent Generation in Polymer:Nonfullerene Acceptor Solar Cells. <i>Advanced Energy Materials</i> , 2018 , 8, 1801537	21.8	20
299	Residual Pd Enables Photocatalytic H2 Evolution from Conjugated Polymers. <i>ACS Energy Letters</i> , 2018 , 3, 2846-2850	20.1	40
298	Crystal Engineering of Dibenzothiophenothieno[3,2-b]thiophene (DBTTT) Isomers for Organic Field-Effect Transistors. <i>Chemistry of Materials</i> , 2018 , 30, 7587-7592	9.6	15
297	The Effect of Residual Palladium Catalyst Contamination on the Photocatalytic Hydrogen Evolution Activity of Conjugated Polymers. <i>Advanced Energy Materials</i> , 2018 , 8, 1802181	21.8	89
296	Visualizing the Solid-Liquid Interface of Conjugated Copolymer Films Using Fluorescent Liposomes <i>ACS Applied Bio Materials</i> , 2018 , 1, 1348-1354	4.1	8
295	Influence of Blend Morphology and Energetics on Charge Separation and Recombination Dynamics in Organic Solar Cells Incorporating a Nonfullerene Acceptor. <i>Advanced Functional Materials</i> , 2018 , 28, 1704389	15.6	68
294	Synthesis and properties of isoindigo and benzo[1,2-b:4,5-b']bis[b]benzothiophene oligomers. <i>Chemical Communications</i> , 2018 , 54, 11152-11155	5.8	8
293	Robust nonfullerene solar cells approaching unity external quantum efficiency enabled by suppression of geminate recombination. <i>Nature Communications</i> , 2018 , 9, 2059	17.4	141
292	Subthreshold Operation of Organic Electrochemical Transistors for Biosignal Amplification. Advanced Science, 2018, 5, 1800453	13.6	55

291	Progress in Poly (3-Hexylthiophene) Organic Solar Cells and the Influence of Its Molecular Weight on Device Performance. <i>Advanced Energy Materials</i> , 2018 , 8, 1801001	21.8	72
290	Highly efficient perovskite solar cells with crosslinked PCBM interlayers. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 2466-2472	13	43
289	Simultaneous topographical, electrical and optical microscopy of optoelectronic devices at the nanoscale. <i>Nanoscale</i> , 2017 , 9, 2723-2731	7.7	14
288	Amorphous Tin Oxide as a Low-Temperature-Processed Electron-Transport Layer for Organic and Hybrid Perovskite Solar Cells. <i>ACS Applied Materials & Amp; Interfaces</i> , 2017 , 9, 11828-11836	9.5	110
287	Trap Healing for High-Performance Low-Voltage Polymer Transistors and Solution-Based Analog Amplifiers on Foil. <i>Advanced Materials</i> , 2017 , 29, 1606938	24	26
286	High mobility, hole transport materials for highly efficient PEDOT:PSS replacement in inverted perovskite solar cells. <i>Journal of Materials Chemistry C</i> , 2017 , 5, 4940-4945	7.1	50
285	Synthesis of a conjugated pyrrolopyridazinedione-benzodithiophene (PPD-BDT) copolymer and its application in organic and hybrid solar cells. <i>Monatshefte Fil Chemie</i> , 2017 , 148, 855-862	1.4	7
284	Charge Separation in Intermixed Polymer:PC70BM Photovoltaic Blends: Correlating Structural and Photophysical Length Scales as a Function of Blend Composition. <i>Journal of Physical Chemistry C</i> , 2017 , 121, 9790-9801	3.8	20
283	Tuning the effective spin-orbit coupling in molecular semiconductors. <i>Nature Communications</i> , 2017 , 8, 15200	17.4	50
282	Diazaisoindigo bithiophene and terthiophene copolymers for application in field-effect transistors and solar cells. <i>Journal of Polymer Science Part A</i> , 2017 , 55, 2691-2699	2.5	13
281	Synthesis and Exciton Dynamics of Donor-Orthogonal Acceptor Conjugated Polymers: Reducing the Singlet-Triplet Energy Gap. <i>Journal of the American Chemical Society</i> , 2017 , 139, 11073-11080	16.4	71
280	Highly Efficient and Reproducible Nonfullerene Solar Cells from Hydrocarbon Solvents. <i>ACS Energy Letters</i> , 2017 , 2, 1494-1500	20.1	74
279	Influence of the Hole Transporting Layer on the Thermal Stability of Inverted Organic Photovoltaics Using Accelerated-Heat Lifetime Protocols. <i>ACS Applied Materials & District Acces</i> , 2017, 9, 14136-1414	12 ^{0.5}	33
278	Microwave-synthesized tin oxide nanocrystals for low-temperature solution-processed planar junction organo-halide perovskite solar cells. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 7759-7763	13	37
277	Photophysical Study of DPPTT-T/PC70BM Blends and Solar Devices as a Function of Fullerene Loading: An Insight into EQE Limitations of DPP-Based Polymers. <i>Advanced Functional Materials</i> , 2017 , 27, 1604426	15.6	12
276	High operational and environmental stability of high-mobility conjugated polymer field-effect transistors through the use of molecular additives. <i>Nature Materials</i> , 2017 , 16, 356-362	27	276
275	Liquid-Solid Dual-Gate Organic Transistors with Tunable Threshold Voltage for Cell Sensing. <i>ACS Applied Materials & District Sensing</i> . 2017 , 9, 38687-38694	9.5	32
274	Polymer:Nonfullerene Bulk Heterojunction Solar Cells with Exceptionally Low Recombination Rates. <i>Advanced Energy Materials</i> , 2017 , 7, 1701561	21.8	69

273	Influence of disorder on transfer characteristics of organic electrochemical transistors. <i>Applied Physics Letters</i> , 2017 , 111, 023301	3.4	49
272	Dithiopheneindenofluorene (TIF) Semiconducting Polymers with Very High Mobility in Field-Effect Transistors. <i>Advanced Materials</i> , 2017 , 29, 1702523	24	61
271	Burn-in Free Nonfullerene-Based Organic Solar Cells. <i>Advanced Energy Materials</i> , 2017 , 7, 1700770	21.8	156
270	Intercalated vs Nonintercalated Morphologies in Donor-Acceptor Bulk Heterojunction Solar Cells: PBTTT:Fullerene Charge Generation and Recombination Revisited. <i>Journal of Physical Chemistry Letters</i> , 2017 , 8, 4061-4068	6.4	14
269	Controlling Long-Lived Triplet Generation from Intramolecular Singlet Fission in the Solid State. Journal of Physical Chemistry Letters, 2017 , 8, 6086-6091	6.4	26
268	An Efficient, "Burn in" Free Organic Solar Cell Employing a Nonfullerene Electron Acceptor. <i>Advanced Materials</i> , 2017 , 29, 1701156	24	138
267	Quantifying local thickness and composition in thin films of organic photovoltaic blends by Raman scattering. <i>Journal of Materials Chemistry C</i> , 2017 , 5, 7270-7282	7.1	15
266	Reducing the efficiency-stability-cost gap of organic photovoltaics with highly efficient and stable small molecule acceptor ternary solar cells. <i>Nature Materials</i> , 2017 , 16, 363-369	27	807
265	Naphthacenodithiophene Based Polymers New Members of the Acenodithiophene Family Exhibiting High Mobility and Power Conversion Efficiency. <i>Advanced Functional Materials</i> , 2016 , 26, 696	1 - 6969) ¹⁸
264	Molecular Design of Semiconducting Polymers for High-Performance Organic Electrochemical Transistors. <i>Journal of the American Chemical Society</i> , 2016 , 138, 10252-9	16.4	189
263	N-type organic electrochemical transistors with stability in water. <i>Nature Communications</i> , 2016 , 7, 1306	6 6 7.4	170
262	Ambipolar Organic Phototransistors with p-Type/n-Type Conjugated Polymer Bulk Heterojunction Light-Sensing Layers. <i>Advanced Electronic Materials</i> , 2016 , 2, 1600264	6.4	38
261	Reduced voltage losses yield 10% efficient fullerene free organic solar cells with >1 V open circuit voltages. <i>Energy and Environmental Science</i> , 2016 , 9, 3783-3793	35.4	425
2 60	Indolo-naphthyridine-6,13-dione Thiophene Building Block for Conjugated Polymer Electronics: Molecular Origin of Ultrahigh n-Type Mobility. <i>Chemistry of Materials</i> , 2016 , 28, 8366-8378	9.6	45
259	High-efficiency and air-stable P3HT-based polymer solar cells with a new non-fullerene acceptor. <i>Nature Communications</i> , 2016 , 7, 11585	17.4	903
258	ORGANIC DEVICES. Avoid the kinks when measuring mobility. <i>Science</i> , 2016 , 352, 1521-2	33.3	181
257	Decoupling Charge Transport and Electroluminescence in a High Mobility Polymer Semiconductor. <i>Advanced Materials</i> , 2016 , 28, 6378-85	24	21
256	Photo- and electroluminescence of ambipolar, high-mobility, donor-acceptor polymers. <i>Organic Electronics</i> , 2016 , 32, 220-227	3.5	27

255	Organic/inorganic epitaxy: commensurate epitaxial growth of truxenone on Cu (111). <i>RSC Advances</i> , 2016 , 6, 17125-17128	3.7	4
254	Highly red-shifted NIR emission from a novel anthracene conjugated polymer backbone containing Pt(II) porphyrins. <i>Polymer Chemistry</i> , 2016 , 7, 722-730	4.9	15
253	Singlet Exciton Lifetimes in Conjugated Polymer Films for Organic Solar Cells. <i>Polymers</i> , 2016 , 8,	4.5	81
252	Real-Time Investigation of Intercalation and Structure Evolution in Printed Polymer:Fullerene Bulk Heterojunction Thin Films. <i>Advanced Energy Materials</i> , 2016 , 6, 1502025	21.8	15
251	Improved Efficiency in Inverted Perovskite Solar Cells Employing a Novel Diarylamino-Substituted Molecule as PEDOT:PSS Replacement. <i>Advanced Energy Materials</i> , 2016 , 6, 1502101	21.8	63
250	A Novel Alkylated Indacenodithieno[3,2-b]thiophene-Based Polymer for High-Performance Field-Effect Transistors. <i>Advanced Materials</i> , 2016 , 28, 3922-7	24	100
249	One-Step Facile Synthesis of a Simple Hole Transport Material for Efficient Perovskite Solar Cells. <i>Chemistry of Materials</i> , 2016 , 28, 2515-2518	9.6	45
248	Exploring the origin of high optical absorption in conjugated polymers. <i>Nature Materials</i> , 2016 , 15, 746-	5 3 7	233
247	Sodium and Potassium Ion Selective Conjugated Polymers for Optical Ion Detection in Solution and Solid State. <i>Advanced Functional Materials</i> , 2016 , 26, 514-523	15.6	41
246	Capacitance Spectroscopy of Light Induced Trap States in Organic Solar Cells. <i>Journal of Physical Chemistry C</i> , 2016 , 120, 22169-22178	3.8	23
245	Azaisoindigo conjugated polymers for high performance n-type and ambipolar thin film transistor applications. <i>Journal of Materials Chemistry C</i> , 2016 , 4, 9704-9710	7.1	56
244	Controlling the mode of operation of organic transistors through side-chain engineering. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 12017-12022	2 ^{11.5}	251
243	Dual Function Additives: A Small Molecule Crosslinker for Enhanced Efficiency and Stability in Organic Solar Cells. <i>Advanced Energy Materials</i> , 2015 , 5, 1401426	21.8	54
242	A Nature-Inspired Conjugated Polymer for High Performance Transistors and Solar Cells. <i>Macromolecules</i> , 2015 , 48, 5148-5154	5.5	40
241	Synthesis and Exciton Dynamics of Triplet Sensitized Conjugated Polymers. <i>Journal of the American Chemical Society</i> , 2015 , 137, 10383-90	16.4	38
240	Organic photovoltaics: Crosslinking for optimal morphology and stability. <i>Materials Today</i> , 2015 , 18, 42.	5 <u>-</u> 435	105
239	Effect of fluorination of 2,1,3-benzothiadiazole. <i>Journal of Organic Chemistry</i> , 2015 , 80, 5045-8	4.2	77
238	Polaron pair mediated triplet generation in polymer/fullerene blends. <i>Nature Communications</i> , 2015 , 6, 6501	17.4	65

237	Compatibility of amorphous triarylamine copolymers with solution-processed hole injecting metal oxide bottom contacts. <i>Journal of Materials Chemistry C</i> , 2015 , 3, 4530-4536	7.1	7
236	An electron beam evaporated TiO2 layer for high efficiency planar perovskite solar cells on flexible polyethylene terephthalate substrates. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 22824-22829	13	105
235	Non-fullerene electron acceptors for use in organic solar cells. <i>Accounts of Chemical Research</i> , 2015 , 48, 2803-12	24.3	944
234	Dithienosilolothiophene: A New Polyfused Donor for Organic Electronics. <i>Macromolecules</i> , 2015 , 48, 5557-5562	5.5	3
233	All-inkjet printed organic transistors: Dielectric surface passivation techniques for improved operational stability and lifetime. <i>Microelectronics Reliability</i> , 2015 , 55, 1192-1195	1.2	20
232	Role of Polymer Fractionation in Energetic Losses and Charge Carrier Lifetimes of Polymer: Fullerene Solar Cells. <i>Journal of Physical Chemistry C</i> , 2015 , 119, 19668-19673	3.8	21
231	2,1,3-Benzothiadiazole-5,6-dicarboxylic imidea versatile building block for additive- and annealing-free processing of organic solar cells with efficiencies exceeding 8%. <i>Advanced Materials</i> , 2015 , 27, 948-53	24	72
230	A thieno[3,2-b][1]benzothiophene isoindigo building block for additive- and annealing-free high-performance polymer solar cells. <i>Advanced Materials</i> , 2015 , 27, 4702-7	24	113
229	Effects of alkyl chain positioning on conjugated polymer microstructure and field-effect mobilities. <i>MRS Communications</i> , 2015 , 5, 435-440	2.7	2
228	Operational electrochemical stability of thiophene-thiazole copolymers probed by resonant Raman spectroscopy. <i>Journal of Chemical Physics</i> , 2015 , 142, 244904	3.9	10
227	Classification of semiconducting polymeric mesophases to optimize device postprocessing. <i>Journal of Polymer Science, Part B: Polymer Physics</i> , 2015 , 53, 1641-1653	2.6	19
226	Conjugated polymer-porphyrin complexes for organic electronics. <i>ChemPhysChem</i> , 2015 , 16, 1223-30	3.2	10
225	Chalcogenophene comonomer comparison in small band gap diketopyrrolopyrrole-based conjugated polymers for high-performing field-effect transistors and organic solar cells. <i>Journal of the American Chemical Society</i> , 2015 , 137, 1314-21	16.4	317
224	A rhodanine flanked nonfullerene acceptor for solution-processed organic photovoltaics. <i>Journal of the American Chemical Society</i> , 2015 , 137, 898-904	16.4	407
223	Thiophene-Based High-Performance Donor Polymers for Organic Solar Cells 2014 , 27-60		
222	Benzotrithiophene Copolymers: Influence of Molecular Packing and Energy Levels on Charge Carrier Mobility. <i>Macromolecules</i> , 2014 , 47, 2883-2890	5.5	21
221	Towards optimisation of photocurrent from fullerene excitons in organic solar cells. <i>Energy and Environmental Science</i> , 2014 , 7, 1037	35.4	36
220	Morphological stability and performance of polymer-fullerene solar cells under thermal stress: the impact of photoinduced PC60BM oligomerization. <i>ACS Nano</i> , 2014 , 8, 1297-308	16.7	111

219	Approaching disorder-free transport in high-mobility conjugated polymers. <i>Nature</i> , 2014 , 515, 384-8	50.4	692
218	The effect of thiadiazole out-backbone displacement in indacenodithiophene semiconductor polymers. <i>Journal of Materials Chemistry C</i> , 2014 , 2, 8789-8795	7.1	19
217	Synthesis of [1]benzothieno[3,2-b][1]benzothiophene pendant and norbornene random co-polymers via ring opening metathesis. <i>Journal of Materials Chemistry C</i> , 2014 , 2, 538-541	7.1	10
216	Electron-deficient truxenone derivatives and their use in organic photovoltaics. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 12348-12354	13	29
215	Polaron stability in semiconducting polymer neat films. <i>Chemical Communications</i> , 2014 , 50, 14425-8	5.8	12
214	Reduced roughness for improved mobility in benzodipyrrolidone-based, n-type OFETS. <i>Journal of Materials Chemistry C</i> , 2014 , 2, 8822-8828	7.1	19
213	Power conversion efficiency enhancement in diketopyrrolopyrrole based solar cells through polymer fractionation. <i>Journal of Materials Chemistry C</i> , 2014 , 2, 8593-8598	7.1	14
212	Effect of Chalcogen Atom Substitution on the Optoelectronic Properties in Cyclopentadithiophene Polymers. <i>Macromolecules</i> , 2014 , 47, 5889-5894	5.5	59
211	Enhancing fullerene-based solar cell lifetimes by addition of a fullerene dumbbell. <i>Angewandte Chemie - International Edition</i> , 2014 , 53, 12870-5	16.4	80
210	Determination and Control of Microstructure in Organic Photovoltaic Devices 2014 , 827-860		
210	Determination and Control of Microstructure in Organic Photovoltaic Devices 2014 , 827-860 Thieno[3,2-b]thiophene Flanked Isoindigo Polymers for High Performance Ambipolar OFET Applications. <i>Advanced Functional Materials</i> , 2014 , 24, n/a-n/a	15.6	31
	Thieno[3,2-b]thiophene Flanked Isoindigo Polymers for High Performance Ambipolar OFET	15.6	31 23
209	Thieno[3,2-b]thiophene Flanked Isoindigo Polymers for High Performance Ambipolar OFET Applications. <i>Advanced Functional Materials</i> , 2014 , 24, n/a-n/a Optimisation of diketopyrrolopyrrole:fullerene solar cell performance through control of polymer		
209	Thieno[3,2-b]thiophene Flanked Isoindigo Polymers for High Performance Ambipolar OFET Applications. <i>Advanced Functional Materials</i> , 2014 , 24, n/a-n/a Optimisation of diketopyrrolopyrrole:fullerene solar cell performance through control of polymer molecular weight and thermal annealing. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 19282-19289 Bis-lactam-based donor polymers for organic solar cells: Evolution by design. <i>Thin Solid Films</i> , 2014 ,	13	23
209 208	Thieno[3,2-b]thiophene Flanked Isoindigo Polymers for High Performance Ambipolar OFET Applications. <i>Advanced Functional Materials</i> , 2014 , 24, n/a-n/a Optimisation of diketopyrrolopyrrole:fullerene solar cell performance through control of polymer molecular weight and thermal annealing. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 19282-19289 Bis-lactam-based donor polymers for organic solar cells: Evolution by design. <i>Thin Solid Films</i> , 2014 , 560, 82-85 Material Crystallinity as a Determinant of Triplet Dynamics and Oxygen Quenching in Donor	13	23
209 208 207 206	Thieno[3,2-b]thiophene Flanked Isoindigo Polymers for High Performance Ambipolar OFET Applications. <i>Advanced Functional Materials</i> , 2014 , 24, n/a-n/a Optimisation of diketopyrrolopyrrole:fullerene solar cell performance through control of polymer molecular weight and thermal annealing. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 19282-19289 Bis-lactam-based donor polymers for organic solar cells: Evolution by design. <i>Thin Solid Films</i> , 2014 , 560, 82-85 Material Crystallinity as a Determinant of Triplet Dynamics and Oxygen Quenching in Donor Polymers for Organic Photovoltaic Devices. <i>Advanced Functional Materials</i> , 2014 , 24, 1474-1482 Enhancing Fullerene-Based Solar Cell Lifetimes by Addition of a Fullerene Dumbbell. <i>Angewandte</i>	13 2.2 15.6	23 2 56
209 208 207 206	Thieno[3,2-b]thiophene Flanked Isoindigo Polymers for High Performance Ambipolar OFET Applications. <i>Advanced Functional Materials</i> , 2014 , 24, n/a-n/a Optimisation of diketopyrrolopyrrole:fullerene solar cell performance through control of polymer molecular weight and thermal annealing. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 19282-19289 Bis-lactam-based donor polymers for organic solar cells: Evolution by design. <i>Thin Solid Films</i> , 2014 , 560, 82-85 Material Crystallinity as a Determinant of Triplet Dynamics and Oxygen Quenching in Donor Polymers for Organic Photovoltaic Devices. <i>Advanced Functional Materials</i> , 2014 , 24, 1474-1482 Enhancing Fullerene-Based Solar Cell Lifetimes by Addition of a Fullerene Dumbbell. <i>Angewandte Chemie</i> , 2014 , 126, 13084-13089	13 2.2 15.6 3.6	23 2 56 6

(2013-2013)

201	Alkyl Chain Extension as a Route to Novel Thieno[3,2-b]thiophene Flanked Diketopyrrolopyrrole Polymers for Use in Organic Solar Cells and Field Effect Transistors. <i>Macromolecules</i> , 2013 , 46, 5961-59	6 7 ·5	67
200	Molecular origin of high field-effect mobility in an indacenodithiophene-benzothiadiazole copolymer. <i>Nature Communications</i> , 2013 , 4, 2238	17.4	384
199	Photocurrent enhancement from diketopyrrolopyrrole polymer solar cells through alkyl-chain branching point manipulation. <i>Journal of the American Chemical Society</i> , 2013 , 135, 11537-40	16.4	248
198	New Fused Bis-Thienobenzothienothiophene Copolymers and Their Use in Organic Solar Cells and Transistors. <i>Macromolecules</i> , 2013 , 46, 727-735	5.5	40
197	Synthesis and morphology of asymmetric, alkyne-functionalised pentacene and 2-fluoroanthradithiophene. <i>Tetrahedron Letters</i> , 2013 , 54, 6814-6818	2	1
196	Isostructural, Deeper Highest Occupied Molecular Orbital Analogues of Poly(3-hexylthiophene) for High-Open Circuit Voltage Organic Solar Cells. <i>Chemistry of Materials</i> , 2013 , 25, 4239-4249	9.6	50
195	Post-Polymerization Ketalization for Improved Organic Photovoltaic Materials. <i>Macromolecules</i> , 2013 , 46, 7727-7732	5.5	12
194	Charge-Transfer State Dynamics Following Hole and Electron Transfer in Organic Photovoltaic Devices. <i>Journal of Physical Chemistry Letters</i> , 2013 , 4, 209-15	6.4	110
193	Efficient truxenone-based acceptors for organic photovoltaics. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 73-76	13	43
192	Effects of Confinement on Microstructure and Charge Transport in High Performance Semicrystalline Polymer Semiconductors. <i>Advanced Functional Materials</i> , 2013 , 23, 2091-2098	15.6	68
191	BPTs: thiophene-flanked benzodipyrrolidone conjugated polymers for ambipolar organic transistors. <i>Chemical Communications</i> , 2013 , 49, 4465-7	5.8	58
190	Effect of Fluorination on the Properties of a DonorAcceptor Copolymer for Use in Photovoltaic Cells and Transistors. <i>Chemistry of Materials</i> , 2013 , 25, 277-285	9.6	201
189	Dihydropyrroloindoledione-based copolymers for organic electronics. <i>Journal of Materials Chemistry C</i> , 2013 , 1, 2711	7.1	19
188	Correlating triplet yield, singlet oxygen generation and photochemical stability in polymer/fullerene blend films. <i>Chemical Communications</i> , 2013 , 49, 1291-3	5.8	125
187	High mobility field-effect transistors with versatile processing from a small-molecule organic semiconductor. <i>Advanced Materials</i> , 2013 , 25, 4352-7	24	116
186	Pyrroloindacenodithiophene polymers: the effect of molecular structure on OFET performance. <i>Polymer Chemistry</i> , 2013 , 4, 3537	4.9	21
185	Recent advances in transistor performance of polythiophenes. <i>Progress in Polymer Science</i> , 2013 , 38, 2053-2069	29.6	95
184	The influence of polymer purification on photovoltaic device performance of a series of indacenodithiophene donor polymers. <i>Advanced Materials</i> , 2013 , 25, 2029-34	24	119

183	Influence of crystallinity and energetics on charge separation in polymer-inorganic nanocomposite films for solar cells. <i>Scientific Reports</i> , 2013 , 3, 1531	4.9	81
182	Improved field-effect transistor performance of a benzotrithiophene polymer through ketal cleavage in the solid state. <i>ACS Applied Materials & Description</i> (1988) 1806-10 1806-19 18	9.5	19
181	Recent advances in the development of semiconducting DPP-containing polymers for transistor applications. <i>Advanced Materials</i> , 2013 , 25, 1859-80	24	711
180	Inkjet-Printed Organic Electronics: Operational Stability and Reliability Issues. <i>ECS Transactions</i> , 2013 , 53, 1-10	1	1
179	In-situ monitoring of molecular vibrations of two organic semiconductors in photovoltaic blends and their impact on thin film morphology. <i>Applied Physics Letters</i> , 2013 , 102, 173302	3.4	20
178	Synthesis of two dihydropyrroloindoledione-based copolymers for organic electronics. <i>Journal of Polymer Science Part A</i> , 2013 , 51, 1285-1291	2.5	23
177	Alkyl side-chain branching point effects in thieno[3,4-c]pyrrole-4,6-dione copolymers 2013 , 1, 30-35		7
176	Thieno[3,2-b]thiophene-diketopyrrolopyrrole Containing Polymers for Inverted Solar Cells Devices with High Short Circuit Currents. <i>Advanced Functional Materials</i> , 2013 , 23, 5647-5654	15.6	71
175	Photoconductivity anisotropy study in uniaxially aligned polymer based planar photodiodes. <i>Organic Electronics</i> , 2012 , 13, 36-42	3.5	14
174	High-performance ambipolar diketopyrrolopyrrole-thieno[3,2-b]thiophene copolymer field-effect transistors with balanced hole and electron mobilities. <i>Advanced Materials</i> , 2012 , 24, 647-52	24	488
173	Germaindacenodithiophene based low band gap polymers for organic solar cells. <i>Chemical Communications</i> , 2012 , 48, 2955-7	5.8	49
172	A new thiophene substituted isoindigo based copolymer for high performance ambipolar transistors. <i>Chemical Communications</i> , 2012 , 48, 3939-41	5.8	208
171	Competition between the charge transfer state and the singlet states of donor or acceptor limiting the efficiency in polymer:fullerene solar cells. <i>Journal of the American Chemical Society</i> , 2012 , 134, 685-	9 2 6.4	219
170	Random benzotrithiophene-based donor-acceptor copolymers for efficient organic photovoltaic devices. <i>Chemical Communications</i> , 2012 , 48, 5832-4	5.8	108
169	On the energetic dependence of charge separation in low-band-gap polymer/fullerene blends. Journal of the American Chemical Society, 2012, 134, 18189-92	16.4	160
168	Use of X-ray diffraction, molecular simulations, and spectroscopy to determine the molecular packing in a polymer-fullerene bimolecular crystal. <i>Advanced Materials</i> , 2012 , 24, 6071-9	24	113
167	Factors Governing Intercalation of Fullerenes and Other Small Molecules Between the Side Chains of Semiconducting Polymers Used in Solar Cells. <i>Advanced Energy Materials</i> , 2012 , 2, 1208-1217	21.8	90
166	Organic Semiconductor Materials for Transistors 2012 , 1-26		5

165	Synthesis of novel thieno[3,2-b]thienobis(silolothiophene) based low bandgap polymers for organic photovoltaics. <i>Chemical Communications</i> , 2012 , 48, 7699-701	5.8	60
164	Charge photogeneration in donor/acceptor organic solar cells. <i>Journal of Photonics for Energy</i> , 2012 , 2, 021001	1.2	10
163	Efficient Charge Photogeneration by the Dissociation of PC70BM Excitons in Polymer/Fullerene Solar Cells. <i>Journal of Physical Chemistry Letters</i> , 2012 , 3, 140-144	6.4	54
162	Recent advances in high mobility donor acceptor semiconducting polymers. <i>Journal of Materials Chemistry</i> , 2012 , 22, 14803		131
161	Photovoltaic and field effect transistor performance of selenophene and thiophene diketopyrrolopyrrole co-polymers with dithienothiophene. <i>Journal of Materials Chemistry</i> , 2012 , 22, 12	817	90
160	Correlating Emissive Non-Geminate Charge Recombination with Photocurrent Generation Efficiency in Polymer/Perylene Diimide Organic Photovoltaic Blend Films. <i>Advanced Functional Materials</i> , 2012 , 22, 2318-2326	15.6	28
159	Silaindacenodithiophene-Based Low Band Gap Polymers The Effect of Fluorine Substitution on Device Performances and Film Morphologies. <i>Advanced Functional Materials</i> , 2012 , 22, 1663-1670	15.6	170
158	Solution-processed small molecule-polymer blend organic thin-film transistors with hole mobility greater than 5 cm2/Vs. <i>Advanced Materials</i> , 2012 , 24, 2441-6	24	202
157	A Systematic Approach to the Design Optimization of Light-Absorbing Indenofluorene Polymers for Organic Photovoltaics. <i>Advanced Energy Materials</i> , 2012 , 2, 260-265	21.8	47
156	Design of semiconducting indacenodithiophene polymers for high performance transistors and solar cells. <i>Accounts of Chemical Research</i> , 2012 , 45, 714-22	24.3	229
155	Benzotrithiophene Co-polymers with High Charge Carrier Mobilities in Field-Effect Transistors. <i>Chemistry of Materials</i> , 2011 , 23, 4025-4031	9.6	50
154	Pyrroloindacenodithiophene containing polymers for organic field effect transistors and organic photovoltaics. <i>Journal of Materials Chemistry</i> , 2011 , 21, 18744		48
153	A benzotrithiophene-based low band gap polymer for polymer solar cells with high open-circuit voltage. <i>Journal of Materials Chemistry</i> , 2011 , 21, 17642		39
152	Silaindacenodithiophene Semiconducting Polymers for Efficient Solar Cells and High-Mobility Ambipolar Transistors <i>Chemistry of Materials</i> , 2011 , 23, 768-770	9.6	120
151	Molecular packing of high-mobility diketo pyrrolo-pyrrole polymer semiconductors with branched alkyl side chains. <i>Journal of the American Chemical Society</i> , 2011 , 133, 15073-84	16.4	353
150	Thin-film morphology of inkjet-printed single-droplet organic transistors using polarized Raman spectroscopy: effect of blending TIPS-pentacene with insulating polymer. <i>ACS Nano</i> , 2011 , 5, 9824-35	16.7	105
149	Influence of blend microstructure on bulk heterojunction organic photovoltaic performance. <i>Chemical Society Reviews</i> , 2011 , 40, 1185-99	58.5	463
148	Energy versus electron transfer in organic solar cells: a comparison of the photophysics of two indenofluorene: fullerene blend films. <i>Chemical Science</i> , 2011 , 2, 1111	9.4	42

147	Thieno[3,2-b]thiophene-diketopyrrolopyrrole-containing polymers for high-performance organic field-effect transistors and organic photovoltaic devices. <i>Journal of the American Chemical Society</i> , 2011 , 133, 3272-5	16.4	809
146	The phase behavior of a polymer-fullerene bulk heterojunction system that contains bimolecular crystals. <i>Journal of Polymer Science, Part B: Polymer Physics</i> , 2011 , 49, 499-503	2.6	70
145	Synthesis of a novel fused thiophene-thieno[3,2-b]thiophene-thiophene donor monomer and co-polymer for use in OPV and OFETs. <i>Macromolecular Rapid Communications</i> , 2011 , 32, 1664-8	4.8	38
144	Anisotropy of Charge Transport in a Uniaxially Aligned and Chain-Extended, High-Mobility, Conjugated Polymer Semiconductor. <i>Advanced Functional Materials</i> , 2011 , 21, 932-940	15.6	150
143	Efficient quenching of a guanidinium-containing fluorescence sensor. <i>ChemPhysChem</i> , 2011 , 12, 765-8	3.2	6
142	Origin of the different transport properties of electron and hole polarons in an ambipolar polyselenophene-based conjugated polymer. <i>Physical Review B</i> , 2011 , 84,	3.3	36
141	Benzotrithiophenea planar, electron-rich building block for organic semiconductors. <i>Organic Letters</i> , 2011 , 13, 2414-7	6.2	62
140	Indacenodithiophene-co-benzothiadiazole Copolymers for High Performance Solar Cells or Transistors via Alkyl Chain Optimization. <i>Macromolecules</i> , 2011 , 44, 6649-6652	5.5	152
139	Percolation behaviour in high mobility p-channel polymer/small-molecule blend organic field-effect transistors. <i>Organic Electronics</i> , 2011 , 12, 143-147	3.5	39
138	Polymerizable Liquid Crystal Networks for Semiconductor Applications. <i>Liquid Crystals Book Series</i> , 2011 , 287-318		
137	Correlations between mechanical and electrical properties of polythiophenes. ACS Nano, 2010, 4, 7538	-446.7	178
136	Bulk charge transport in liquid-crystalline polymer semiconductors based on poly(2,5-bis(3-alkylthiophen-2-yl)thieno[3,2-b]thiophene). <i>Polymer Chemistry</i> , 2010 , 1, 1448	4.9	8
135	Photoinduced Charge Carrier Generation in Blends of Poly(Thienothiophene) Derivatives and [6,6]-Phenyl-C61-butyric Acid Methyl Ester: Phase Segregation versus Intercalation. <i>Journal of Physical Chemistry C</i> , 2010 , 114, 15116-15120	3.8	33
134	Charge Photogeneration in Low Band Gap Polyselenophene/Fullerene Blend Films. <i>Journal of Physical Chemistry C</i> , 2010 , 114, 8068-8075	3.8	55
133	Materials and applications for large area electronics: solution-based approaches. <i>Chemical Reviews</i> , 2010 , 110, 3-24	68.1	1510
132	Understanding the Influence of Morphology on Poly(3-hexylselenothiophene):PCBM Solar Cells. <i>Macromolecules</i> , 2010 , 43, 1169-1174	5.5	86
131	Acceptor energy level control of charge photogeneration in organic donor/acceptor blends. <i>Journal of the American Chemical Society</i> , 2010 , 132, 12919-26	16.4	119
130	Solution-processed organic transistors based on semiconducting blends. <i>Journal of Materials Chemistry</i> , 2010 , 20, 2562		181

(2009-2010)

129	Ink-jet printed p-type polymer electronics based on liquid-crystalline polymer semiconductors. Journal of Materials Chemistry, 2010 , 20, 1927		37
128	Indacenodithiophene semiconducting polymers for high-performance, air-stable transistors. Journal of the American Chemical Society, 2010, 132, 11437-9	16.4	463
127	Polymer Field-Effect Transistors Fabricated by the Sequential Gravure Printing of Polythiophene, Two Insulator Layers, and a Metal Ink Gate. <i>Advanced Functional Materials</i> , 2010 , 20, 239-246	15.6	113
126	The Influence of Film Morphology in High-Mobility Small-Molecule:Polymer Blend Organic Transistors. <i>Advanced Functional Materials</i> , 2010 , 20, 2330-2337	15.6	110
125	In-Plane Liquid Crystalline Texture of High-Performance Thienothiophene Copolymer Thin Films. <i>Advanced Functional Materials</i> , 2010 , 20, 4098-4106	15.6	55
124	Microstructural origin of high mobility in high-performance poly(thieno-thiophene) thin-film transistors. <i>Advanced Materials</i> , 2010 , 22, 697-701	24	69
123	High mobility ambipolar charge transport in polyselenophene conjugated polymers. <i>Advanced Materials</i> , 2010 , 22, 2371-5	24	172
122	Solid-state processing of organic semiconductors. <i>Advanced Materials</i> , 2010 , 22, 3942-7	24	41
121	Air-stable solution-processed hybrid transistors with hole and electron mobilities exceeding 2 cm2 V-1 s-1. <i>Advanced Materials</i> , 2010 , 22, 3598-602	24	52
120	Revealing buried interfaces to understand the origins of threshold voltage shifts in organic field-effect transistors. <i>Advanced Materials</i> , 2010 , 22, 5105-9	24	92
119	Analysis of charge photogeneration as a key determinant of photocurrent density in polymer: fullerene solar cells. <i>Advanced Materials</i> , 2010 , 22, 5287-91	24	54
118	Recombination dynamics as a key determinant of open circuit voltage in organic bulk heterojunction solar cells: a comparison of four different donor polymers. <i>Advanced Materials</i> , 2010 , 22, 4987-92	24	343
117	Delayed luminescence spectroscopy of organic photovoltaic binary blend films: Probing the emissive non-geminate charge recombination. <i>Advanced Materials</i> , 2010 , 22, 5183-7	24	24
116	Polyterthiophenes Incorporating 3,4-Difluorothiophene Units: Application in Organic Field-Effect Transistors. <i>Macromolecular Chemistry and Physics</i> , 2010 , 211, 2642-2648	2.6	10
115	Local charge trapping in conjugated polymers resolved by scanning Kelvin probe microscopy. <i>Physical Review Letters</i> , 2009 , 103, 256803	7.4	56
114	Separate charge transport pathways determined by the time of flight method in bimodal polytriarylamine. <i>Journal of Applied Physics</i> , 2009 , 105, 013701	2.5	28
113	Solution processed low-voltage organic transistors and complementary inverters. <i>Applied Physics Letters</i> , 2009 , 95, 103310	3.4	28
112	Bimolecular Crystals of Fullerenes in Conjugated Polymers and the Implications of Molecular Mixing for Solar Cells. <i>Advanced Functional Materials</i> , 2009 , 19, 1173-1179	15.6	373

111	Doping of Conjugated Polythiophenes with Alkyl Silanes. Advanced Functional Materials, 2009, 19, 1906	-19.161	98
110	Semiconducting Thienothiophene Copolymers: Design, Synthesis, Morphology, and Performance in Thin-Film Organic Transistors. <i>Advanced Materials</i> , 2009 , 21, 1091-1109	24	382
109	High-Performance Polymer-Small Molecule Blend Organic Transistors. <i>Advanced Materials</i> , 2009 , 21, 1166-1171	24	326
108	Charge-Transport Anisotropy Due to Grain Boundaries in Directionally Crystallized Thin Films of Regioregular Poly(3-hexylthiophene). <i>Advanced Materials</i> , 2009 , 21, 1568-1572	24	286
107	Polaron Localization at Interfaces in High-Mobility Microcrystalline Conjugated Polymers. <i>Advanced Materials</i> , 2009 , 21, 3759-3763	24	92
106	The effects of metal impurities in poly[(2,5-bis(3-decylthiophen-2-yl)thieno[2,3-b]thiophene] on field-effect transistor properties. <i>Organic Electronics</i> , 2009 , 10, 215-221	3.5	6
105	Systematic improvement in charge carrier mobility of air stable triarylamine copolymers. <i>Journal of the American Chemical Society</i> , 2009 , 131, 10814-5	16.4	148
104	Distorted asymmetric cubic nanostructure of soluble fullerene crystals in efficient polymer:fullerene solar cells. <i>ACS Nano</i> , 2009 , 3, 2557-62	16.7	53
103	Controlling the orientation of terraced nanoscale "ribbons" of a poly(thiophene) semiconductor. <i>ACS Nano</i> , 2009 , 3, 780-7	16.7	145
102	High mobility p-channel organic field effect transistors on flexible substrates using a polymer-small molecule blend. <i>Synthetic Metals</i> , 2009 , 159, 2365-2367	3.6	55
101	Charge photogeneration in polythiophene-perylene diimide blend films. <i>Chemical Communications</i> , 2009 , 5445-7	5.8	62
100	Tuning the properties of polymer bulk heterojunction solar cells by adjusting fullerene size to control intercalation. <i>Nano Letters</i> , 2009 , 9, 4153-7	11.5	235
99	Influence of Molecular Weight Distribution on the Gelation of P3HT and Its Impact on the Photovoltaic Performance. <i>Macromolecules</i> , 2009 , 42, 4661-4666	5.5	145
98	. Journal of Display Technology, 2009 , 5, 169-171		6
97	Development of Polymer Semiconductors for Field-Effect Transistor Devices in Displays 2009 , 393-429		1
96	Semiconducting Polythiophenes for Field-Effect Transistor Devices in Flexible Electronics: Synthesis and Structure Property Relationships. <i>Kluwer International Series in Electronic Materials: Science and Technology</i> , 2009 , 261-296		
95	Organic field-effect transistors of poly(2,5-bis(3-dodecylthiophen-2-yl)thieno[2,3-b]thiophene) deposited on five different silane self-assembled monolayers. <i>Chemical Communications</i> , 2008 , 871-3	5.8	16
94	Influence of polymer ionization potential on the open-circuit voltage of hybrid polymer/TiO2 solar cells. <i>Applied Physics Letters</i> , 2008 , 92, 053308	3.4	34

(2007-2008)

93	Charge carrier formation in polythiophene/fullerene blend films studied by transient absorption spectroscopy. <i>Journal of the American Chemical Society</i> , 2008 , 130, 3030-42	16.4	576
92	An alignable fluorene thienothiophene copolymer with deep-blue electroluminescent emission at 410 nm. <i>Chemical Communications</i> , 2008 , 1079-81	5.8	44
91	Bulk Heterojunction Materials Composed of Poly(2,5-bis(3-tetradecylthiophen-2-yl)thieno[3,2-b]thiophene): Ultrafast Electron Transfer and Carrier Recombination <i>Journal of Physical Chemistry C</i> , 2008 , 112, 7853-7857	3.8	42
90	Molecular Basis of Mesophase Ordering in a Thiophene-Based Copolymer. <i>Macromolecules</i> , 2008 , 41, 5709-5715	5.5	97
89	Electrical Properties of Reactive Liquid Crystal Semiconductors. <i>Japanese Journal of Applied Physics</i> , 2008 , 47, 488-491	1.4	19
88	The Impact of the Dielectric/Semiconductor Interface on Microstructure and Charge Carrier Transport in High-Performance Polythiophene Transistors. <i>ECS Transactions</i> , 2008 , 13, 113-122	1	1
87	High-performance organic integrated circuits based on solution processable polymer-small molecule blends. <i>Applied Physics Letters</i> , 2008 , 93, 253301	3.4	67
86	Organic bulk heterojunction solar cells using poly(2,5-bis(3-tetradecyllthiophen-2-yl)thieno[3,2,-b]thiophene). <i>Applied Physics Letters</i> , 2008 , 92, 1133	0 3 ⁴	106
85	Theoretical and experimental investigations of a polyalkylated-thieno[3,2-b]thiophene semiconductor. <i>Journal of Applied Physics</i> , 2008 , 104, 083705	2.5	8
84	Progress and Challenges in Commercialization of Organic Electronics. MRS Bulletin, 2008, 33, 653-662	3.2	95
83	Polymer thin film transistor without surface pretreatment on silicon nitride gate dielectric. <i>Applied Physics Letters</i> , 2008 , 93, 073305	3.4	6
82	Hexyl-Substituted Oligoselenophenes with Central Tetrafluorophenylene Units: Synthesis, Characterisation and Application in Organic Field Effect Transistors. <i>Macromolecular Rapid Communications</i> , 2008 , 29, 1839-1843	4.8	22
81	The Effect of Interfacial Roughness on the Thin Film Morphology and Charge Transport of High-Performance Polythiophenes. <i>Advanced Functional Materials</i> , 2008 , 18, 742-750	15.6	107
80	The Effect of Poly(3-hexylthiophene) Molecular Weight on Charge Transport and the Performance of Polymer:Fullerene Solar Cells. <i>Advanced Functional Materials</i> , 2008 , 18, 2373-2380	15.6	233
79	Highly Efficient Patterning of Organic Single-Crystal Transistors from the Solution Phase. <i>Advanced Materials</i> , 2008 , 20, 4044-4048	24	93
78	Relationship between Film Morphology, Optical, and Conductive Properties of Poly(thienothiophene): [6,6]-Phenyl C-61-Butyric Acid Methyl Ester Bulk Heterojunctions. <i>Journal of Physical Chemistry C</i> , 2008 , 112, 15973-15979	3.8	16
77	Amplified fluorescence quenching in high ionic strength media. <i>Soft Matter</i> , 2007 , 3, 1381-1387	3.6	13
76	Synthesis of an end-capped sexithiophene bearing fused tetrathiafulvalene (TTF) units. <i>Organic Letters</i> , 2007 , 9, 1601-4	6.2	19

75	Regioregular poly(3-hexyl)selenophene: a low band gap organic hole transporting polymer. <i>Chemical Communications</i> , 2007 , 5061-3	5.8	298
74	Effect of the End Group of Regioregular Poly(3-hexylthiophene) Polymers on the Performance of Polymer/Fullerene Solar Cells. <i>Journal of Physical Chemistry C</i> , 2007 , 111, 8137-8141	3.8	87
73	Structural and Electronic Effects of 1,3,4-Thiadiazole Units Incorporated into Polythiophene Chains. <i>Macromolecules</i> , 2007 , 40, 6585-6593	5.5	42
72	Polyterthiophenes as Donors for Polymer Solar Cells. <i>Advanced Functional Materials</i> , 2007 , 17, 1371-13	7 6 5.6	86
71	High Carrier Mobility Polythiophene Thin Films: Structure Determination by Experiment and Theory. <i>Advanced Materials</i> , 2007 , 19, 833-837	24	254
70	Dynamics of Threshold Voltage Shifts in Organic and Amorphous Silicon Field-Effect Transistors. <i>Advanced Materials</i> , 2007 , 19, 2785-2789	24	201
69	Studies of Highly Regioregular Poly(3-hexylselenophene) for Photovoltaic Applications. <i>Advanced Materials</i> , 2007 , 19, 4544-4547	24	147
68	Critical Role of Side-Chain Attachment Density on the Order and Device Performance of Polythiophenes. <i>Macromolecules</i> , 2007 , 40, 7960-7965	5.5	297
67	X-ray scattering study of thin films of poly(2,5-bis(3-alkylthiophen-2-yl)thieno[3,2-b]thiophene). <i>Journal of the American Chemical Society</i> , 2007 , 129, 3226-37	16.4	317
66	Significant dependence of morphology and charge carrier mobility on substrate surface chemistry in high performance polythiophene semiconductor films. <i>Applied Physics Letters</i> , 2007 , 90, 062117	3.4	125
65	Influence of source-drain electric field on mobility and charge transport in organic field-effect transistors. <i>Journal of Applied Physics</i> , 2007 , 102, 044503	2.5	44
64	A comprehensive study of the effect of reactive end groups on the charge carrier transport within polymerized and nonpolymerized liquid crystals. <i>Journal of Applied Physics</i> , 2007 , 101, 023713	2.5	20
63	Effects of the surface roughness of plastic-compatible inorganic dielectrics on polymeric thin film transistors. <i>Applied Physics Letters</i> , 2007 , 90, 233508	3.4	63
62	Undoped polythiophene field-effect transistors with mobility of 1cm2VIIsII. <i>Applied Physics Letters</i> , 2007 , 91, 243512	3.4	210
61	Relative importance of polaron activation and disorder on charge transport in high-mobility conjugated polymer field-effect transistors. <i>Physical Review B</i> , 2007 , 76,	3.3	78
60	Reliable Suzuki Chemistry for Functionalised Polythiophene Synthesis. <i>Materials Research Society Symposia Proceedings</i> , 2007 , 1003, 1		
59	Distinguishing between nonlinear channel transport and contact effects in organic FETs 2007,		3
58	A study of the effects metal residues in poly(9,9-dioctylfluorene) have on field-effect transistor device characteristics. <i>Synthetic Metals</i> , 2007 , 157, 872-875	3.6	16

(2005-2007)

57	Electrochemical doping in electrolyte-gated polymer transistors. <i>Journal of the American Chemical Society</i> , 2007 , 129, 14367-71	16.4	131
56	Electronic Structure and Charge-Transport Properties of Polythiophene Chains Containing Thienothiophene Units: A Joint Experimental and Theoretical Study. <i>Chemistry of Materials</i> , 2007 , 19, 4949-4956	9.6	60
55	Combinatorial screening of the effect of temperature on the microstructure and mobility of a high performance polythiophene semiconductor. <i>Applied Physics Letters</i> , 2007 , 90, 012112	3.4	27
54	Polymer chain/nanocrystal ordering in thin films of regioregular poly(3-hexylthiophene) and blends with a soluble fullerene. <i>Soft Matter</i> , 2006 , 3, 117-121	3.6	35
53	Direct measurement of carrier drift velocity and mobility in a polymer field-effect transistor. <i>Applied Physics Letters</i> , 2006 , 89, 242104	3.4	17
52	TOF mobility measurements in pristine films of P3HT: control of hole injection and influence of film thickness 2006 , 6334, 16		8
51	Beyond the metal-insulator transition in polymer electrolyte gated polymer field-effect transistors. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2006 , 103, 11834-7	11.5	155
50	Molecular-weight dependence of interchain polaron delocalization and exciton bandwidth in high-mobility conjugated polymers. <i>Physical Review B</i> , 2006 , 74,	3.3	244
49	The influence of molecular weight on the microstructure and thin film transistor characteristics of pBTTT polymers. 2006 ,		8
48	Designing solution-processable air-stable liquid crystalline crosslinkable semiconductors. <i>Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences</i> , 2006 , 364, 2779-87	, 3	9
47	A strong regioregularity effect in self-organizing conjugated polymer films and high-efficiency polythiophene:fullerene solar cells. <i>Nature Materials</i> , 2006 , 5, 197-203	27	2097
46	Liquid-crystalline semiconducting polymers with high charge-carrier mobility. <i>Nature Materials</i> , 2006 , 5, 328-33	27	1836
45	Suzuki route to regioregular polyalkylthiophenes using Ir-catalysed borylation to make the monomer, and Pd complexes of bulky phosphanes as coupling catalysts for polymerisation. <i>Tetrahedron Letters</i> , 2006 , 47, 5143-5146	2	53
44	Radical ion pair mediated triplet formation in polymer-fullerene blend films. <i>Chemical Communications</i> , 2006 , 3939-41	5.8	50
43	Influence of Molecular Design on the Field-Effect Transistor Characteristics of Terthiophene Polymers. <i>Chemistry of Materials</i> , 2005 , 17, 1381-1385	9.6	110
42	Microwave-assisted synthesis of polythiophenes via the Stille coupling. <i>Synthetic Metals</i> , 2005 , 148, 199	5- 3.% 8	104
41	Thiophene and Selenophene Copolymers Incorporating Fluorinated Phenylene Units in the Main Chain: Synthesis, Characterization, and Application in Organic Field-Effect Transistors. <i>Chemistry of Materials</i> , 2005 , 17, 6567-6578	9.6	145
40	Stable polythiophene semiconductors incorporating thieno[2,3-b]thiophene. <i>Journal of the American Chemical Society</i> , 2005 , 127, 1078-9	16.4	321

39	Hexyl-substituted oligothiophenes with a central tetrafluorophenylene unit: crystal engineering of planar structures for p-type organic semiconductors. <i>Chemical Communications</i> , 2005 , 1465-7	5.8	58
38	Stable semiconducting thiophene polymers and their field effect transistor characteristics 2005,		2
37	Effects of semiconductor-dielectric interfaces on polymeric thin-film transistors 2005,		3
36	Insulators and device geometry in polymer field effect transistors. <i>Organic Electronics</i> , 2005 , 6, 142-146	3.5	5
35	The first direct experimental comparison between the hugely contrasting properties of PEDOT and the all-sulfur analogue PEDTT by analogy with well-defined EDTTEDOT copolymers. <i>Journal of Materials Chemistry</i> , 2005 , 15, 4783		82
34	Ambipolar Field-Effect Transistors Based on Solution-Processable Blends of Thieno[2,3-b]thiophene Terthiophene Polymer and Methanofullerenes. <i>Advanced Materials</i> , 2005 , 17, 2608-2612	24	89
33	Photopolymerization of Reactive Mesogens. <i>Macromolecular Chemistry and Physics</i> , 2005 , 206, 2153-215	2 .6	32
32	High mobility ambipolar charge transport in a cross-linked reactive mesogen at room temperature. Applied Physics Letters, 2005 , 87, 172110	3.4	31
31	Emission Quenching of a Poly(Phenylene Ethynylene) (PPE) in the Solid State. <i>Materials Research Society Symposia Proceedings</i> , 2005 , 888, 1		
30	Lamination method for the study of interfaces in polymeric thin film transistors. <i>Journal of the American Chemical Society</i> , 2004 , 126, 13928-9	16.4	96
29	Enhanced Mobility of Poly(3-hexylthiophene) Transistors by Spin-Coating from High-Boiling-Point Solvents. <i>Chemistry of Materials</i> , 2004 , 16, 4772-4776	9.6	811
28	Electronic structure of a novel alkylidene fluorene polymer in the pristine state. <i>Chemical Physics Letters</i> , 2004 , 385, 184-188	2.5	5
27	High ambipolar and balanced carrier mobility in regioregular poly(3-hexylthiophene). <i>Applied Physics Letters</i> , 2004 , 85, 3890-3892	3.4	194
26	Influence of intensive light exposure on polymer field-effect transistors. <i>Applied Physics Letters</i> , 2004 , 85, 1377-1379	3.4	37
25	Alkylidene Fluorene Liquid Crystalline Semiconducting Polymers for Organic Field Effect Transistor Devices. <i>Macromolecules</i> , 2004 , 37, 5250-5256	5.5	75
24	4-Hexylbithieno[3,2-b:2Bte]pyridine:[An Efficient Electron-Accepting Unit in Fluorene and Indenofluorene Copolymers for Light-Emitting Devices. <i>Macromolecules</i> , 2004 , 37, 709-715	5.5	53
23	Air-stable all-polymer field-effect transistors with organic electrodes. <i>Synthetic Metals</i> , 2004 , 145, 83-85	3.6	62
22	Self-assembled liquid crystalline solution processable semiconductors 2004 ,		1

21	New liquid crystalline solution processible organic semiconductors and their performance in field effect transistors 2003 ,		4
20	Polymerisable liquid crystalline organic semiconductors and their fabrication in organic field effect transistors. <i>Journal of Materials Chemistry</i> , 2003 , 13, 2436		92
19	Further evidence for spontaneous solid-state polymerisation reactions in 2,5-dibromothiophene derivatives. <i>Journal of Materials Chemistry</i> , 2003 , 13, 2075		60
18	High Performance Organic Field-Effect Transistors and Integrated Inverters. <i>Materials Research Society Symposia Proceedings</i> , 2001 , 665, 1		18
17	Side chain pendant non-linear optically active polymers synthesised by grafting reactions on maleic anhydride copolymers. <i>Macromolecular Chemistry and Physics</i> , 1996 , 197, 687-699	2.6	3
16	Fluorinated NLO polymers with improved optical transparency in the near infrared. <i>Journal of Polymer Science Part A</i> , 1995 , 33, 1177-1183	2.5	26
15	Photochemical fabrication of nonlinear optical polymer waveguides. <i>Advanced Materials</i> , 1995 , 7, 715-7	1:84	5
14	Mechanical failure in thin-film nonlinear optical polymers: Structure and processing issues. <i>Journal of Applied Polymer Science</i> , 1994 , 53, 665-676	2.9	8
13	Synthesis and Electrooptic Characterization of a Novel Highly Active Indoline Nitroazobenzene Methacrylate Copolymer. <i>Chemistry of Materials</i> , 1994 , 6, 611-613	9.6	2
12	Thienothiophene Copolymers in Field Effect Transistors647-672		1
11	Green Synthesis of Lactone-Based Conjugated Polymers for n-Type Organic Electrochemical Transistors. <i>Advanced Functional Materials</i> ,2111439	15.6	7
10	An Electroactive Filter with Tunable Porosity Based on Glycolated Polythiophene. Small Science,210011	3	1
9	Aldol Polymerization to Construct Half-Fused Semiconducting Polymers. <i>Macromolecules</i> ,	5.5	4
8	Chemical Design Rules for Non-Fullerene Acceptors in Organic Solar Cells. <i>Advanced Energy Materials</i> ,2102363	21.8	7
7	Ion Pair Uptake in Ion Gel Devices Based on Organic Mixed IonicElectronic Conductors. <i>Advanced Functional Materials</i> ,2104301	15.6	9
6	Efficiency Limits in Wide-Bandgap Ge-Containing Donor Polymer:Nonfullerene Acceptor Bulk Heterojunction Solar Cells. <i>Physica Status Solidi - Rapid Research Letters</i> ,2100206	2.5	1
5	Low-Defect, High Molecular Weight Indacenodithiophene (IDT) Polymers Via a CH Activation: Evaluation of a Simpler and Greener Approach to Organic Electronic Materials1503-1512		3
4	All-Solid-State Vertical Three-Terminal N-Type Organic Synaptic Devices for Neuromorphic Computing. <i>Advanced Functional Materials</i> ,2107314	15.6	5

Generation of long-lived charges in organic semiconductor heterojunction nanoparticles for efficient photocatalytic hydrogen evolution. *Nature Energy*,

62.3 22

CHAPTER 3. High-performance Organic Photovoltaic Donor Polymers. *RSC Nanoscience and Nanotechnology*,69-108

Donor Functionalization Tuning the N-Type Performance of DonorAcceptor Copolymers for Aqueous-Based Electrochemical Devices. *Advanced Functional Materials*,2201821

15.6 1